Rapid capacity decay and sluggish reaction kinetics are major barriers hindering the applications of manganese-based cathode materials for aqueous zinc-ion batteries.Herein,the effects of crystal plane on the in-situ ...Rapid capacity decay and sluggish reaction kinetics are major barriers hindering the applications of manganese-based cathode materials for aqueous zinc-ion batteries.Herein,the effects of crystal plane on the in-situ transformation behavior and electrochemical performance of manganese-based cathode is discussed.A comprehensive discussion manifests that the exposed(100)crystal plane is beneficial to the phase transformation from tunnel-structured MnO_(2) to layer-structured ZnMn_(3)O_(7)·3H_(2)O,which plays a critical role for the high reactivity,high capacity,fast diffusion kinetics and long cycling stability.Additionally,a two-stage zinc storage mechanism can be demonstrated,involving continuous activation reaction and phase transition reaction.As expected,it exhibits a high capacity of 275 mAh g^(-1)at 100 mA g^(-1),a superior durability over 1000 cycles and good rate capability.This study may open new windows toward developing advanced cathodes for ZIBs,and facilitate the applications of ZIBs in large-scale energy storage system.展开更多
Multivalent-ion(such as Zn^(2+),Mg^(2+),Al^(3+))batteries are considered as a prospective alternative for large-scale energy storage.However,the main problem of cathode materials for multivalent-ion batteries is the s...Multivalent-ion(such as Zn^(2+),Mg^(2+),Al^(3+))batteries are considered as a prospective alternative for large-scale energy storage.However,the main problem of cathode materials for multivalent-ion batteries is the sluggish diffusion of multivalent ions.Many cathode materials will self-adjust under electrochemical conditions to achieve the optimal state for multivalent-ion storage.In this review,the significant role of electrochemical in situ structural reconstruction of cathode materials is suggested.The types,basic characteristics,and formation mechanisms of reconstructed phases have been systematically discussed and commented.The most important insight we pointed out is that the cathode materials with loose structures after in situ electrochemical activation are conducive to the reversible diffusion of multivalent ions.Moreover,several crucial issues of electrochemical activation and reconstruction were further analyzed and discussed.The challenges and future perspectives are presented in the final section.展开更多
Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,t...Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,this work reports a feasible procedure to achieve the controllably partial removal of thiolate ligands from unsupported[Au_(25)(PET)_(18)]-nanoclusters with the preservation of the core structure.This procedure shortens the processing duration by rapid heating and cooling on the basis of traditional annealing treatment,avoiding the reconfiguration or agglomeration of Au_(25)nanoclusters,where the degree of dethiolation can be regulated by the control of duration.This work finds that a moderate degree of dethiolation can expose the Au active sites while maintaining the suppression of the competing hydrogen evolution reaction.Consequently,the activity and selectivity towards CO formation in electrochemical CO_(2)reduction reaction of Au_(25)nanoclusters can be promoted.This work provides a new approach for the removal of thiolate ligands from atomically precise gold nanoclusters.展开更多
Sodium iron hexacyanoferrate(FeHCF)is one of the most promising cathode materials for sodium-ion batteries(SIBs)due to its low cost theoretical capacity.However,the low electrochemical activity of Fe^(LS)(C)in FeHCF d...Sodium iron hexacyanoferrate(FeHCF)is one of the most promising cathode materials for sodium-ion batteries(SIBs)due to its low cost theoretical capacity.However,the low electrochemical activity of Fe^(LS)(C)in FeHCF drags down its practical capacity and potential plateau.Herein,FeHCF with high Fe^(LS)(C)electrochemical activity(C-FeHCF)is synthesized via a facile citric acid-assisted solvothermal method.As the cathode of SIBs,C-FeHCF shows superior cycling stability(ca.87.3%capacity retention for 1000 cycles at 10 C)and outstanding rate performance(ca.68.5%capacity retention at 50 C).Importantly,the contribution of Fe^(LS)(C)to the whole capacity was quantitatively analyzed via combining dQ/dV and discharge curve for the first time,and the index reaches 44.53%for C-FeHCF,close to the theoretical value.In-situ X-ray diffraction proves the structure stability of C-FeHCF during charge-discharge process,ensuring its superior cycling performance.Furthermore,the application feasibility of the C-FeHCF cathode in quasi-solid SIBs is also evaluated.The quasi-solid SIBs with the C-FeHCF cathode exhibit excellent electrochemical performance,delivering an initial discharge capacity of 106.5 mAh g^(−1) at 5 C and high capacity retention of 89.8%over 1200 cycles.This work opens new insights into the design and development of advanced cathode materials for SIBs and the beyond.展开更多
The influence of Ga and In on the electrochemical properties of Mg anode materials were investigated by the polarization and galvanostatic curve tests. The microstructure and the corroded surface of the Mg-In-Ga alloy...The influence of Ga and In on the electrochemical properties of Mg anode materials were investigated by the polarization and galvanostatic curve tests. The microstructure and the corroded surface of the Mg-In-Ga alloys were observed by scanning electron microscopy (SEM). The corrosion product of the Mg-0.8%In (mass fraction) and Mg-0.8%Ga-0.3%In alloy were determined by X-ray diffraction. The results show that no second phase exists in the Mg-xIn (x=0-0.8%) allloys. Intergranular compounds containing Ga and In elements occur in the Mg-0.8%In-xGa (x=0-0.8%) alloys. The addition of In into Mg as well as the addition of 0.05%-0.5%Ga into Mg-In alloy promotes the corrosion resistance. The addition of Ga into Mg-In alloys also promotes the electrochemical activity. The Mg-0.8%In-0.8%Ga alloy has the most negative mean potential,-1.682 V, which is more negative than -1.406 V in AZ91D. The corrosion type of the Mg-In-Ga alloys is general corrosion and the corrosion product is Mg(OH)2.展开更多
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t...Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.展开更多
The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and mea...The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and measurements of electrochemical impedance spectroscopy. Scanning electron microscopy, X-ray diffractometry and energy dispersive spectrometry were employed to characterize the microstructures and the corroded surface of the above alloys. The results demonstrate that the microstructure of the Mg-2%Ga alloy is solid solution and the Mg-2%Hg and Mg-2%Hg-2%Ga alloys have white second-phases at the grain boundaries. The Mg-2%Ga alloy has the worst electrochemical activity and the best corrosion resistance, showing a mean potential of -1.48 V and a corrosion current density of 0.15 mA/cm2. The Mg-2%Hg-2%Ga alloy has the best electrochemical activity and the worst corrosion resistance, showing a mean potential of -1.848 V and a corrosion current density of 2.136 mA/cm2. The activation mechanism of the Mg-Hg-Ga alloy is dissolution-deposition of the Hg and Ga atoms.展开更多
The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(...The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(3)) core/shell microspheres with oxygen vacancies are facilely fabricated by using a vanadium-based metal-organic framework(MIL-100(V)) as a sacrificial template.This unique structure can improve the conductivity of the VO_(x),accelerate electrolyte diffusion,and suppress structural collapse during circulation.Subsequently,H_(2)O molecules are introduced into the interlayer of VO_(x) through a highly efficient in-situ electrochemical activation process,facilitating the intercalation and diffusion of zinc ions.After the activation,an optimal sample exhibits a high specific capacity of 464.3 mA h g^(-1) at0.2 A g^(-1) and 395.2 mA h g^(-1) at 10 A g^(-1),indicating excellent rate performance.Moreover,the optimal sample maintains a capacity retention of about 89.3% after 2500 cycles at 10 A g^(-1).Density functional theory calculation demonstrates that the presence of oxygen vacancies and intercalated water molecules can significantly reduce the diffusion barrier for zinc ions.In addition,it is proved that the storage of zinc ions in the cathode is achieved by reversible intercalation/extraction during the charge and discharge process through various ex-situ analysis technologies.This work demonstrates that the p-VO_(x)@C has great potential for applications in aqueous ZIBs after electrochemical activation.展开更多
Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabrica...Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabricate portable glucose sensors by recycling copper from e-waste.We bring up a laser-induced full-automatic fabrication method for synthesizing continuous heterogeneous Cu_(x)O(h-Cu_(x)O)nano-skeletons electrode for glucose sensing,offering rapid(<1 min),clean,air-compatible,and continuous fabrication,applicable to a wide range of Cu-containing substrates.Leveraging this approach,h-Cu_(x)O nanoskeletons,with an inner core predominantly composed of Cu_(2)O with lower oxygen content,juxtaposed with an outer layer rich in amorphous Cu_(x)O(a-Cu_(x)O)with higher oxygen content,are derived from discarded printed circuit boards.When employed in glucose detection,the h-Cu_(x)O nano-skeletons undergo a structural evolution process,transitioning into rigid Cu_(2)O@CuO nano-skeletons prompted by electrochemical activation.This transformation yields exceptional glucose-sensing performance(sensitivity:9.893 mA mM^(-1) cm^(-2);detection limit:0.34μM),outperforming most previously reported glucose sensors.Density functional theory analysis elucidates that the heterogeneous structure facilitates gluconolactone desorption.This glucose detection device has also been downsized to optimize its scalability and portability for convenient integration into people’s everyday lives.展开更多
Organic redox compounds are attractive cathode materials in aqueous zinc-ion batteries owing to their low cost,environmental friendliness,multiple-electron-transfer reactions,and resource sustainability.However,the re...Organic redox compounds are attractive cathode materials in aqueous zinc-ion batteries owing to their low cost,environmental friendliness,multiple-electron-transfer reactions,and resource sustainability.However,the realized energy density is constrained by the limited capacity and low voltage.Herein,copper-tetracyanoquinodimethane(CuTCNQ),an organic charge-transfer complex is evaluated as a zinc-ion battery cathode owing to the good electron acceptation ability in the cyano groups that improves the voltage output.Through electrochemical activation,electrolyte optimization,and adoption of graphene-based separator,CuTCNQ-based aqueous zinc-ion batteries deliver much improved rate performance and cycling stability with anti-self-discharge properties.The structural evolution of CuTCNQ during discharge/charge are investigated by ex situ Fourier transform infra-red(FT-IR)spectra,ex situ X-ray photoelectron spectroscopy(XPS),and in situ ultraviolet visible spectroscopy(UV-vis),revealing reversible redox reactions in both cuprous cations(Cu^(+))and organic anions(TCNQ^(x-1)),thus delivering a high voltage output of 1.0 V and excellent discharge capacity of 158 mAh g^(-1).The remarkable electrochemical performance in Zn//CuTCNQ is ascribed to the strong inductive effect of cyano groups in CuTCNQ that elevated the voltage output and the graphene-modified separator that inhibited CuTCNQ dissolution and shuttle effect in aqueous electrolytes.展开更多
An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) det...An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.展开更多
The direct electrocatalytic synthesis of ammonia from N2 and H2O by using renewable energy sources and ambient pressure/temperature operations is a breakthrough technology,which can reduce by over 90%the greenhouse ga...The direct electrocatalytic synthesis of ammonia from N2 and H2O by using renewable energy sources and ambient pressure/temperature operations is a breakthrough technology,which can reduce by over 90%the greenhouse gas emissions of this chemical and energy storage process.We report here an in-situ electrochemical activation method to prepare Fe2O3-CNT(iron oxide on carbon nanotubes)electrocatalysts for the direct ammonia synthesis from N2 and H2O.The in-situ electrochemical activation leads to a large increase of the ammonia formation rate and Faradaic efficiency which reach the surprising high values of 41.6μg mgcat^−1 h^−1 and 17%,respectively,for an in-situ activation of 3 h,among the highest values reported so far for non-precious metal catalysts that use a continuous-flow polymer-electrolytemembrane cell and gas-phase operations for the ammonia synthesis hemicell.The electrocatalyst was stable at least 12 h at the working conditions.Tests by switching N2 to Ar evidence that ammonia was formed from the gas-phase nitrogen.The analysis of the changes of reactivity and of the electrocatalyst characteristics as a function of the time of activation indicates a linear relationship between the ammonia formation rate and a specific XPS(X-ray-photoelectron spectroscopy)oxygen signal related to O2−in iron-oxide species.This results together with characterization data by TEM and XRD suggest that the iron species active in the direct and selective synthesis of ammonia is a maghemite-type iron oxide,and this transformation from the initial hematite is responsible for the in-situ enhancement of 3-4 times of the TOF(turnover frequency)and NH3 Faradaic efficiency.This transformation is likely related to the stabilization of the maghemite species at CNT defect sites,although for longer times of preactivation a sintering occurs with a loss of performances.展开更多
Mg-6%Al-5%Pb(mass fraction) anodes with different contents of zinc were prepared by melting and casting.The electrochemical discharge behavior of these anodes in 3.5% NaCl solutions was investigated by galvanostatic t...Mg-6%Al-5%Pb(mass fraction) anodes with different contents of zinc were prepared by melting and casting.The electrochemical discharge behavior of these anodes in 3.5% NaCl solutions was investigated by galvanostatic test and electrochemical impedance spectroscopy(EIS).The microstructures and the corroded surfaces of these anodes were studied by scanning electron microscopy(SEM) and emission spectrum analysis(ESA).The phase structures and the corrosion products of the anodes were analyzed by X-ray diffraction(XRD).The results show that zinc promotes the grain refinement of Mg-6%Al-5%Pb anode and makes the average discharge potential of Mg-6%Al-5%Pb anode more negative during galvanostatic test.Mg-6%Al-5%Pb anode with the addition of 1%(mass fraction) zinc has the best electrochemical performance.The activation mechanism of zinc to Mg-6%Al-5%Pb anode is as follows:The hydrolyzation of dissolved Zn2+ ions reduces the pH value of the solution near the surface of the anode and accelerates the dissolution of Mg(OH)2 film;The precipitated Zn(OH)2 with similar structure as Mg(OH)2 combines with Mg(OH)2 film easily and makes it break down.展开更多
Activated carbons for electrochemical capacitor electrodes are prepared from soyabean using chemical activation with KOH. The pore size is easily controllable by changing the mass ratio between KOH and carbonized prod...Activated carbons for electrochemical capacitor electrodes are prepared from soyabean using chemical activation with KOH. The pore size is easily controllable by changing the mass ratio between KOH and carbonized product. The as-prepared materials possess a large specific surface area, unique structure, well- developed hierarchical porosity and plentiful heteroatoms(mainly O and N). Thus resulted in its high specific capacitance,good rate capacity and cycling stability. Moreover, attributing to worldwide availability, renewable nature and low-cost, activated carbon prepared from soyabean has a good potential in energy conversion and storage devices.展开更多
The electrochemical conversion is closely correlated with the electrocatalytic activities of the electrocatalyst.Herein,the urchin-like Ni-doped W_(18)O_(49)/NF with enriched active sites was prepared by solvothermal ...The electrochemical conversion is closely correlated with the electrocatalytic activities of the electrocatalyst.Herein,the urchin-like Ni-doped W_(18)O_(49)/NF with enriched active sites was prepared by solvothermal method followed by a low-temperature pyrolysis treatment was reported.Results demonstrate that the incorporation of Ni-doping triggers the lattice distortion of W_(18)O_(49) for the increasement of oxygen defects.Further,high-valent W^(6+)are partially reduced to low-valent W^(4+),wherein the electrons originate from the oxidation process of Ni^(2+)to Ni^(3+).The Ni^(3+)ions show an enhanced orbital overlap with the OER reaction intermediates.The generated W^(4+)ions contribute to release oxygen vacancies,eventually reorganizing Ni-doped W_(18)O_(49)/NF to unique electrochemical active species with a special amorphous-crystalline interface(AM/NiWO_x/NiOOH/NF).Simultaneously,the reconstruction results in an optimized valence band and conduction band.Eventually,the resultant AM/NiWO_x/NiOOH/NF with abundant active sites and improved oxidation/reduction capability exhibits more superior catalytic performance compared with the Ni-doped W_(18)O_(49)/NF counterpart.This study gives more insights in the electrochemical evolution of the tungsten-based oxide and provides effective strategies for optimizing the catalytic activity of materials with inherent hydrogen evolution reaction limitations.展开更多
The electrochemical polymerization of catechol on platinum has been carried out using repeated potential cycling between -0.2 and 1.1 V (versus SCE). The electrolytic solution consisted of 0.2 mol dm(-3) catechol, 0.5...The electrochemical polymerization of catechol on platinum has been carried out using repeated potential cycling between -0.2 and 1.1 V (versus SCE). The electrolytic solution consisted of 0.2 mol dm(-3) catechol, 0.5 mol dm(-3) NaCl and 0.1 mol dm(-3) Na2HPO4 with pH 8.72. Catechol can not be polymerized at pH greater than or equal to 10.12. Polycatechol has an electrochemical lactivity at pH less than or equal to 4. The anodic and cathodic peak potentials of polycatechol shift towards more negative values as the pH of the solution increases from 1 to 4. The electrochemical activity of polycatechol hardly changes in this pH region, but it decreases slowly with time. This is caused by oxygen in air, which leads to an irreversible oxidation of polycatechol. This property is favorable for protecting metals from corrosion. Raman and FTIR spectra of polycatechol and catechol are quite different. AFM images of polycatechol films provide evidence that the image of the oxidized state of polycatechol is markedly different from that of the reduced one. This difference is caused by doping and dedoping of polycatechol.展开更多
Conjugated aromatic azomethines containing a carbazole group were synthesized. Their structures have been confirmed by IR, MS and UV spectrometries. When iodine was used as the dope to the conjugated compounds, the el...Conjugated aromatic azomethines containing a carbazole group were synthesized. Their structures have been confirmed by IR, MS and UV spectrometries. When iodine was used as the dope to the conjugated compounds, the electrical conductivities (EC) of the doped conjugated compounds were increased by several orders of magnitude. The thermal stability of these two compounds investigated by TGA shows a good result, which guarantees the correct result of EC when the compounds are heated. As can be seen from the CV characterization of the electrochemical properties of these two compounds, the azomethine diamine and p-aminophenyl-9-ethylcarbazolyl azomethine possess electrochemical activity, which arises from the heteroatom of molecules.展开更多
Nickel-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM,1-x-y≥0.6)is known as a promising cathode material for lithium-ion batteries since its superiority of high voltage and large capacity.However,polycrystalline Ni-rich NCMs...Nickel-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM,1-x-y≥0.6)is known as a promising cathode material for lithium-ion batteries since its superiority of high voltage and large capacity.However,polycrystalline Ni-rich NCMs suffer from poor cycle stability,limiting its further application.Herein,single crystal and polycrystalline LiNi_(0.84)Co_(0.07)Mn_(0.09)O_(2)cathode materials are compared to figure out the relation of the morphology and the electrochemical storage performance.According to the Li^(+)diffusion coefficient,the lower capacity of single crystal samples is mainly ascribed to the limited Li+diffusion in the large bulk.In situ XRD illustrates that the polycrystalline and single crystal NCMs show a virtually identical manner and magnitude in lattice contraction and expansion during cycling.Also,the electrochemically active surface area(ECSA)measurement is employed in lithium-ion battery study for the first time,and these two cathodes show huge discrepancy in the ECSA after the initial cycle.These results suggest that the single crystal sample exhibits reduced cracking,surface side reaction,and Ni/Li mixing but suffers the lower Li^(+)diffusion kinetics.This work offers a view of how the morphology of Ni-rich NCM effects the electrochemical performance,which is instructive for developing a promising strategy to achieve good rate performance and excellent cycling stability.展开更多
Despite the dazzling theoretical capacity,the devasting electrochemical activity of Li_(2)MnO_(3)(LMO)caused by the difficult oxidation of Mn4+impedes its practical application as the lithium-ion battery(LIB)cathode.T...Despite the dazzling theoretical capacity,the devasting electrochemical activity of Li_(2)MnO_(3)(LMO)caused by the difficult oxidation of Mn4+impedes its practical application as the lithium-ion battery(LIB)cathode.The efficacious activation of the Li_(2)MnO_(3) by importing electrochemically active Mn3+ions or morphological engineering is instrumental to its lithium storage activity and structural integrity upon cycling.Herein,we propose a conceptual strategy with metal-organic frameworks(MOFs)as self-sacrificial templates to prepare oxygen-deficient Li_(2)MnO_(3)(O_v-LMO)for exalted lithium storage performance.Attributed to optimized morphological features,LMO materials derived from Mn-BDC(H_(2)BDC=1,4-dicarboxybenzene)delivered superior cycling/rate performances compared with their counterparts derived from Mn-BTC(H_(3)BTC=1,3,5-benzenetricarboxylicacid)and Mn-PTC(H_(4)PTC=pyromellitic acid).Both experimental and theoretical studies elucidate the efficacious activation of primitive LMO materials toward advanced lithium storage by importing oxygen deficiencies.Impressively,O_v-LMO derived from Mn-BDC(O_v-BDC-LMO)delivered intriguing reversible capacities(179.2 mA h g^(-1)at 20 mA g^(-1)after 200 cycles and 100.1 mA h g^(-1)at 80 mA g^(-1)after 300 cycles),which can be attributed to the small particle size that shortens pathways for Li+/electron transport,the enhanced redox activity induced by abundant oxygen vacancies,and the optimized electronic configuration that contributes to the faster lithium diffusivity.This work provides insights into the rational design of LMO by morphological and atomic modulation to direct its activation and practical application as an advanced LIB cathode.展开更多
Ciprofloxacin(CIP)is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections.When CIP is discharged into the sewage syste...Ciprofloxacin(CIP)is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections.When CIP is discharged into the sewage system,it cannot be removed by a conventional wastewater treatment plant because of its recalcitrant characteristics.In this study,boron-doped diamond anode and persulfate were used to degrade CIP in an aquatic solution by creating an electrochemically activated persulfate(EAP)process.Ironwas added to the system as a coactivator and the process was called EAP+Fe.The effects of independent variables,including pH,Fe^(2+),persulfate concentration,and electrolysis time on the systemwere optimized using the response surface methodology.The results showed that the EAP+Fe process removed 94%of CIP under the following optimum conditions:A pH of 3,persulfate/Fe^(2+)concentration of 0.4 mmol/L,initial CIP concentration 30 mg/L,and electrolysis time of 12.64 min.CIP removal efficiency was increased from 65.10%to 94.35%by adding Fe^(2+)as a transition metal.CIP degradation products,7 pathways,and 78 intermediates of CIP were studied,and three of those intermediates(m/z 298,498,and 505)were reported.The toxicological analysis based on toxicity estimation software results indicated that some degradation products of CIP were toxic to targeted animals,including fathead minnow,Daphnia magna,Tetrahymena pyriformis,and rats.The optimumoperation costswere similar in EAP and EAP+Fe processes,approximately 0.54€/m^(3).展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51932011 and 52072411)Science and technology innovation Program of Hunan Province(Grant no.2021RC3001)Natural Science Foundation of Hunan Province(Grant no.2021JJ20060,2018RS3019 and 2019JJ30033).
文摘Rapid capacity decay and sluggish reaction kinetics are major barriers hindering the applications of manganese-based cathode materials for aqueous zinc-ion batteries.Herein,the effects of crystal plane on the in-situ transformation behavior and electrochemical performance of manganese-based cathode is discussed.A comprehensive discussion manifests that the exposed(100)crystal plane is beneficial to the phase transformation from tunnel-structured MnO_(2) to layer-structured ZnMn_(3)O_(7)·3H_(2)O,which plays a critical role for the high reactivity,high capacity,fast diffusion kinetics and long cycling stability.Additionally,a two-stage zinc storage mechanism can be demonstrated,involving continuous activation reaction and phase transition reaction.As expected,it exhibits a high capacity of 275 mAh g^(-1)at 100 mA g^(-1),a superior durability over 1000 cycles and good rate capability.This study may open new windows toward developing advanced cathodes for ZIBs,and facilitate the applications of ZIBs in large-scale energy storage system.
基金This work was supported by the National Natural Science Foundation of China (Grant no.51774330,52072411,51932011)the Natural Science Foundation of Hunan Province (Grant no.2021JJ20060)The science and technology innovation Program of Hunan Province (Grant no.2021RC3001).
文摘Multivalent-ion(such as Zn^(2+),Mg^(2+),Al^(3+))batteries are considered as a prospective alternative for large-scale energy storage.However,the main problem of cathode materials for multivalent-ion batteries is the sluggish diffusion of multivalent ions.Many cathode materials will self-adjust under electrochemical conditions to achieve the optimal state for multivalent-ion storage.In this review,the significant role of electrochemical in situ structural reconstruction of cathode materials is suggested.The types,basic characteristics,and formation mechanisms of reconstructed phases have been systematically discussed and commented.The most important insight we pointed out is that the cathode materials with loose structures after in situ electrochemical activation are conducive to the reversible diffusion of multivalent ions.Moreover,several crucial issues of electrochemical activation and reconstruction were further analyzed and discussed.The challenges and future perspectives are presented in the final section.
基金the financial support of the Training Program of the Major Research Plan of the National Natural Science Foundation of China(92061124)the National Natural Science Foundation of China(21975292,21978331,22068008,and 52101186)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(2021A1515010167 and 2022A1515011196)the Guangzhou Key R&D Program/Plan Unveiled Flagship Project(20220602JBGS02)the Guangzhou Basic and Applied Basic Research Project(202201011449)the Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202220 and FC202216)。
文摘Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,this work reports a feasible procedure to achieve the controllably partial removal of thiolate ligands from unsupported[Au_(25)(PET)_(18)]-nanoclusters with the preservation of the core structure.This procedure shortens the processing duration by rapid heating and cooling on the basis of traditional annealing treatment,avoiding the reconfiguration or agglomeration of Au_(25)nanoclusters,where the degree of dethiolation can be regulated by the control of duration.This work finds that a moderate degree of dethiolation can expose the Au active sites while maintaining the suppression of the competing hydrogen evolution reaction.Consequently,the activity and selectivity towards CO formation in electrochemical CO_(2)reduction reaction of Au_(25)nanoclusters can be promoted.This work provides a new approach for the removal of thiolate ligands from atomically precise gold nanoclusters.
基金supported by the Natural Science Foundation of Jiangsu Province (No.BK20210474)the National Natural Science Foundation of China (No.21938005)the Fundamental Research Funds for the Central Universities (No.JUSRP122013).
文摘Sodium iron hexacyanoferrate(FeHCF)is one of the most promising cathode materials for sodium-ion batteries(SIBs)due to its low cost theoretical capacity.However,the low electrochemical activity of Fe^(LS)(C)in FeHCF drags down its practical capacity and potential plateau.Herein,FeHCF with high Fe^(LS)(C)electrochemical activity(C-FeHCF)is synthesized via a facile citric acid-assisted solvothermal method.As the cathode of SIBs,C-FeHCF shows superior cycling stability(ca.87.3%capacity retention for 1000 cycles at 10 C)and outstanding rate performance(ca.68.5%capacity retention at 50 C).Importantly,the contribution of Fe^(LS)(C)to the whole capacity was quantitatively analyzed via combining dQ/dV and discharge curve for the first time,and the index reaches 44.53%for C-FeHCF,close to the theoretical value.In-situ X-ray diffraction proves the structure stability of C-FeHCF during charge-discharge process,ensuring its superior cycling performance.Furthermore,the application feasibility of the C-FeHCF cathode in quasi-solid SIBs is also evaluated.The quasi-solid SIBs with the C-FeHCF cathode exhibit excellent electrochemical performance,delivering an initial discharge capacity of 106.5 mAh g^(−1) at 5 C and high capacity retention of 89.8%over 1200 cycles.This work opens new insights into the design and development of advanced cathode materials for SIBs and the beyond.
基金Project(20110162120051)supported by Specialized Research Fund for the Doctor Program of Higher Education,ChinaProject(51101171)supported by the National Natural Science Foundation of China
文摘The influence of Ga and In on the electrochemical properties of Mg anode materials were investigated by the polarization and galvanostatic curve tests. The microstructure and the corroded surface of the Mg-In-Ga alloys were observed by scanning electron microscopy (SEM). The corrosion product of the Mg-0.8%In (mass fraction) and Mg-0.8%Ga-0.3%In alloy were determined by X-ray diffraction. The results show that no second phase exists in the Mg-xIn (x=0-0.8%) allloys. Intergranular compounds containing Ga and In elements occur in the Mg-0.8%In-xGa (x=0-0.8%) alloys. The addition of In into Mg as well as the addition of 0.05%-0.5%Ga into Mg-In alloy promotes the corrosion resistance. The addition of Ga into Mg-In alloys also promotes the electrochemical activity. The Mg-0.8%In-0.8%Ga alloy has the most negative mean potential,-1.682 V, which is more negative than -1.406 V in AZ91D. The corrosion type of the Mg-In-Ga alloys is general corrosion and the corrosion product is Mg(OH)2.
基金funds from the National Natural Science Foundation of China(51772082 and 51804106)the Natural Science Foundation of Hunan Province(2023JJ10005)
文摘Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.
基金Project (MKPT-02-18) supported by the National Defense Science and Technology Industry Committee of ChinaProject (51101171)supported by the National Natural Science Foundation of China
文摘The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and measurements of electrochemical impedance spectroscopy. Scanning electron microscopy, X-ray diffractometry and energy dispersive spectrometry were employed to characterize the microstructures and the corroded surface of the above alloys. The results demonstrate that the microstructure of the Mg-2%Ga alloy is solid solution and the Mg-2%Hg and Mg-2%Hg-2%Ga alloys have white second-phases at the grain boundaries. The Mg-2%Ga alloy has the worst electrochemical activity and the best corrosion resistance, showing a mean potential of -1.48 V and a corrosion current density of 0.15 mA/cm2. The Mg-2%Hg-2%Ga alloy has the best electrochemical activity and the worst corrosion resistance, showing a mean potential of -1.848 V and a corrosion current density of 2.136 mA/cm2. The activation mechanism of the Mg-Hg-Ga alloy is dissolution-deposition of the Hg and Ga atoms.
基金supported by the National Natural Science Foundation of China(Nos.92163118,51972234)。
文摘The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(3)) core/shell microspheres with oxygen vacancies are facilely fabricated by using a vanadium-based metal-organic framework(MIL-100(V)) as a sacrificial template.This unique structure can improve the conductivity of the VO_(x),accelerate electrolyte diffusion,and suppress structural collapse during circulation.Subsequently,H_(2)O molecules are introduced into the interlayer of VO_(x) through a highly efficient in-situ electrochemical activation process,facilitating the intercalation and diffusion of zinc ions.After the activation,an optimal sample exhibits a high specific capacity of 464.3 mA h g^(-1) at0.2 A g^(-1) and 395.2 mA h g^(-1) at 10 A g^(-1),indicating excellent rate performance.Moreover,the optimal sample maintains a capacity retention of about 89.3% after 2500 cycles at 10 A g^(-1).Density functional theory calculation demonstrates that the presence of oxygen vacancies and intercalated water molecules can significantly reduce the diffusion barrier for zinc ions.In addition,it is proved that the storage of zinc ions in the cathode is achieved by reversible intercalation/extraction during the charge and discharge process through various ex-situ analysis technologies.This work demonstrates that the p-VO_(x)@C has great potential for applications in aqueous ZIBs after electrochemical activation.
基金funded by the Hong Kong Research Grants Council(25201620/C6001-22Y)the Hong Kong Innovation Technology Commission(ITC)under project No.MHP/060/21support of the State Key Laboratory of Advanced Displays and Optoelectronics Technologies at HKUST.
文摘Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabricate portable glucose sensors by recycling copper from e-waste.We bring up a laser-induced full-automatic fabrication method for synthesizing continuous heterogeneous Cu_(x)O(h-Cu_(x)O)nano-skeletons electrode for glucose sensing,offering rapid(<1 min),clean,air-compatible,and continuous fabrication,applicable to a wide range of Cu-containing substrates.Leveraging this approach,h-Cu_(x)O nanoskeletons,with an inner core predominantly composed of Cu_(2)O with lower oxygen content,juxtaposed with an outer layer rich in amorphous Cu_(x)O(a-Cu_(x)O)with higher oxygen content,are derived from discarded printed circuit boards.When employed in glucose detection,the h-Cu_(x)O nano-skeletons undergo a structural evolution process,transitioning into rigid Cu_(2)O@CuO nano-skeletons prompted by electrochemical activation.This transformation yields exceptional glucose-sensing performance(sensitivity:9.893 mA mM^(-1) cm^(-2);detection limit:0.34μM),outperforming most previously reported glucose sensors.Density functional theory analysis elucidates that the heterogeneous structure facilitates gluconolactone desorption.This glucose detection device has also been downsized to optimize its scalability and portability for convenient integration into people’s everyday lives.
基金financially supported by the National Natural Science Foundation of China(Nos.52102117,51173170,and 21773216)the joint project from the Henan-Provincial and the China-National Natural Science Foundations(No.U2004208)Key Science and Technology Program of Henan Province(No.202102310212)
文摘Organic redox compounds are attractive cathode materials in aqueous zinc-ion batteries owing to their low cost,environmental friendliness,multiple-electron-transfer reactions,and resource sustainability.However,the realized energy density is constrained by the limited capacity and low voltage.Herein,copper-tetracyanoquinodimethane(CuTCNQ),an organic charge-transfer complex is evaluated as a zinc-ion battery cathode owing to the good electron acceptation ability in the cyano groups that improves the voltage output.Through electrochemical activation,electrolyte optimization,and adoption of graphene-based separator,CuTCNQ-based aqueous zinc-ion batteries deliver much improved rate performance and cycling stability with anti-self-discharge properties.The structural evolution of CuTCNQ during discharge/charge are investigated by ex situ Fourier transform infra-red(FT-IR)spectra,ex situ X-ray photoelectron spectroscopy(XPS),and in situ ultraviolet visible spectroscopy(UV-vis),revealing reversible redox reactions in both cuprous cations(Cu^(+))and organic anions(TCNQ^(x-1)),thus delivering a high voltage output of 1.0 V and excellent discharge capacity of 158 mAh g^(-1).The remarkable electrochemical performance in Zn//CuTCNQ is ascribed to the strong inductive effect of cyano groups in CuTCNQ that elevated the voltage output and the graphene-modified separator that inhibited CuTCNQ dissolution and shuttle effect in aqueous electrolytes.
基金supported by the National Natural Science Foundation of China(21007033)the Fundamental Research Funds of Shandong University(2015JC017)~~
文摘An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.
基金the frame of ERC Synergy SCOPE(project 810182)PRIN 2015 SMARTNESS project nr.2015K7FZLH projects which are gratefully acknowledgeda SINCHEM Grant.SINCHEM is a Joint Doctorate program selected under the Erasmus Mundus Action 1 Programme(FPA 2013-0037)。
文摘The direct electrocatalytic synthesis of ammonia from N2 and H2O by using renewable energy sources and ambient pressure/temperature operations is a breakthrough technology,which can reduce by over 90%the greenhouse gas emissions of this chemical and energy storage process.We report here an in-situ electrochemical activation method to prepare Fe2O3-CNT(iron oxide on carbon nanotubes)electrocatalysts for the direct ammonia synthesis from N2 and H2O.The in-situ electrochemical activation leads to a large increase of the ammonia formation rate and Faradaic efficiency which reach the surprising high values of 41.6μg mgcat^−1 h^−1 and 17%,respectively,for an in-situ activation of 3 h,among the highest values reported so far for non-precious metal catalysts that use a continuous-flow polymer-electrolytemembrane cell and gas-phase operations for the ammonia synthesis hemicell.The electrocatalyst was stable at least 12 h at the working conditions.Tests by switching N2 to Ar evidence that ammonia was formed from the gas-phase nitrogen.The analysis of the changes of reactivity and of the electrocatalyst characteristics as a function of the time of activation indicates a linear relationship between the ammonia formation rate and a specific XPS(X-ray-photoelectron spectroscopy)oxygen signal related to O2−in iron-oxide species.This results together with characterization data by TEM and XRD suggest that the iron species active in the direct and selective synthesis of ammonia is a maghemite-type iron oxide,and this transformation from the initial hematite is responsible for the in-situ enhancement of 3-4 times of the TOF(turnover frequency)and NH3 Faradaic efficiency.This transformation is likely related to the stabilization of the maghemite species at CNT defect sites,although for longer times of preactivation a sintering occurs with a loss of performances.
基金Project(JPPT-115-168) supported by the National Key Science and Technological Program of China
文摘Mg-6%Al-5%Pb(mass fraction) anodes with different contents of zinc were prepared by melting and casting.The electrochemical discharge behavior of these anodes in 3.5% NaCl solutions was investigated by galvanostatic test and electrochemical impedance spectroscopy(EIS).The microstructures and the corroded surfaces of these anodes were studied by scanning electron microscopy(SEM) and emission spectrum analysis(ESA).The phase structures and the corrosion products of the anodes were analyzed by X-ray diffraction(XRD).The results show that zinc promotes the grain refinement of Mg-6%Al-5%Pb anode and makes the average discharge potential of Mg-6%Al-5%Pb anode more negative during galvanostatic test.Mg-6%Al-5%Pb anode with the addition of 1%(mass fraction) zinc has the best electrochemical performance.The activation mechanism of zinc to Mg-6%Al-5%Pb anode is as follows:The hydrolyzation of dissolved Zn2+ ions reduces the pH value of the solution near the surface of the anode and accelerates the dissolution of Mg(OH)2 film;The precipitated Zn(OH)2 with similar structure as Mg(OH)2 combines with Mg(OH)2 film easily and makes it break down.
文摘Activated carbons for electrochemical capacitor electrodes are prepared from soyabean using chemical activation with KOH. The pore size is easily controllable by changing the mass ratio between KOH and carbonized product. The as-prepared materials possess a large specific surface area, unique structure, well- developed hierarchical porosity and plentiful heteroatoms(mainly O and N). Thus resulted in its high specific capacitance,good rate capacity and cycling stability. Moreover, attributing to worldwide availability, renewable nature and low-cost, activated carbon prepared from soyabean has a good potential in energy conversion and storage devices.
基金supported by the National Natural Science Foundation of China (52073166)the China Scholarship Council (CSC) for the Research Training Program of Guojuan Hai to study at University of Wollongong(201908610223)+5 种基金the Xi’an Key Laboratory of Green Manufacture of Ceramic Materials Foundation (2019220214SYS017CG039)the Key Program for International S&T Cooperation Projects of Shaanxi Province(2020KW-038, 2020GHJD-04)the Science and Technology Program of Xi’an,China (2020KJRC0009)the Scientific Research Program Funded by Shaanxi Provincial Education Department(No. 20JY001)Science and Technology Resource Sharing Platform of Shaanxi Province (2020PT-022)Science and Technology Plan of Weiyang District,Xi’an (202009)。
文摘The electrochemical conversion is closely correlated with the electrocatalytic activities of the electrocatalyst.Herein,the urchin-like Ni-doped W_(18)O_(49)/NF with enriched active sites was prepared by solvothermal method followed by a low-temperature pyrolysis treatment was reported.Results demonstrate that the incorporation of Ni-doping triggers the lattice distortion of W_(18)O_(49) for the increasement of oxygen defects.Further,high-valent W^(6+)are partially reduced to low-valent W^(4+),wherein the electrons originate from the oxidation process of Ni^(2+)to Ni^(3+).The Ni^(3+)ions show an enhanced orbital overlap with the OER reaction intermediates.The generated W^(4+)ions contribute to release oxygen vacancies,eventually reorganizing Ni-doped W_(18)O_(49)/NF to unique electrochemical active species with a special amorphous-crystalline interface(AM/NiWO_x/NiOOH/NF).Simultaneously,the reconstruction results in an optimized valence band and conduction band.Eventually,the resultant AM/NiWO_x/NiOOH/NF with abundant active sites and improved oxidation/reduction capability exhibits more superior catalytic performance compared with the Ni-doped W_(18)O_(49)/NF counterpart.This study gives more insights in the electrochemical evolution of the tungsten-based oxide and provides effective strategies for optimizing the catalytic activity of materials with inherent hydrogen evolution reaction limitations.
基金This work was supported by the National Natural Science Foundation of China (No. 20074027) and the State Key Laboratory of Physical Chemistry of Solid Surface at Xiamen University.
文摘The electrochemical polymerization of catechol on platinum has been carried out using repeated potential cycling between -0.2 and 1.1 V (versus SCE). The electrolytic solution consisted of 0.2 mol dm(-3) catechol, 0.5 mol dm(-3) NaCl and 0.1 mol dm(-3) Na2HPO4 with pH 8.72. Catechol can not be polymerized at pH greater than or equal to 10.12. Polycatechol has an electrochemical lactivity at pH less than or equal to 4. The anodic and cathodic peak potentials of polycatechol shift towards more negative values as the pH of the solution increases from 1 to 4. The electrochemical activity of polycatechol hardly changes in this pH region, but it decreases slowly with time. This is caused by oxygen in air, which leads to an irreversible oxidation of polycatechol. This property is favorable for protecting metals from corrosion. Raman and FTIR spectra of polycatechol and catechol are quite different. AFM images of polycatechol films provide evidence that the image of the oxidized state of polycatechol is markedly different from that of the reduced one. This difference is caused by doping and dedoping of polycatechol.
文摘Conjugated aromatic azomethines containing a carbazole group were synthesized. Their structures have been confirmed by IR, MS and UV spectrometries. When iodine was used as the dope to the conjugated compounds, the electrical conductivities (EC) of the doped conjugated compounds were increased by several orders of magnitude. The thermal stability of these two compounds investigated by TGA shows a good result, which guarantees the correct result of EC when the compounds are heated. As can be seen from the CV characterization of the electrochemical properties of these two compounds, the azomethine diamine and p-aminophenyl-9-ethylcarbazolyl azomethine possess electrochemical activity, which arises from the heteroatom of molecules.
基金supported by the National Natural Science Foundation of China(Nos.51872157,52072208)Shenzhen Technical Plan Project(JCYJ20170817161753629)+1 种基金Fundamental Research Project of Shenzhen(No.JCYJ20190808153609561)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01N111).
文摘Nickel-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM,1-x-y≥0.6)is known as a promising cathode material for lithium-ion batteries since its superiority of high voltage and large capacity.However,polycrystalline Ni-rich NCMs suffer from poor cycle stability,limiting its further application.Herein,single crystal and polycrystalline LiNi_(0.84)Co_(0.07)Mn_(0.09)O_(2)cathode materials are compared to figure out the relation of the morphology and the electrochemical storage performance.According to the Li^(+)diffusion coefficient,the lower capacity of single crystal samples is mainly ascribed to the limited Li+diffusion in the large bulk.In situ XRD illustrates that the polycrystalline and single crystal NCMs show a virtually identical manner and magnitude in lattice contraction and expansion during cycling.Also,the electrochemically active surface area(ECSA)measurement is employed in lithium-ion battery study for the first time,and these two cathodes show huge discrepancy in the ECSA after the initial cycle.These results suggest that the single crystal sample exhibits reduced cracking,surface side reaction,and Ni/Li mixing but suffers the lower Li^(+)diffusion kinetics.This work offers a view of how the morphology of Ni-rich NCM effects the electrochemical performance,which is instructive for developing a promising strategy to achieve good rate performance and excellent cycling stability.
基金the financial support from the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds,pdjh2023b0145)the Research and Development Plan Project in Key Fields of Guangdong Province(2020B0101030005)+1 种基金the Applied special project of Guangdong Provincial Science and Technology Plan(2017B090917002)the Basic and Applied Basic Research Fund of Guangdong Province(2019B1515120027)。
文摘Despite the dazzling theoretical capacity,the devasting electrochemical activity of Li_(2)MnO_(3)(LMO)caused by the difficult oxidation of Mn4+impedes its practical application as the lithium-ion battery(LIB)cathode.The efficacious activation of the Li_(2)MnO_(3) by importing electrochemically active Mn3+ions or morphological engineering is instrumental to its lithium storage activity and structural integrity upon cycling.Herein,we propose a conceptual strategy with metal-organic frameworks(MOFs)as self-sacrificial templates to prepare oxygen-deficient Li_(2)MnO_(3)(O_v-LMO)for exalted lithium storage performance.Attributed to optimized morphological features,LMO materials derived from Mn-BDC(H_(2)BDC=1,4-dicarboxybenzene)delivered superior cycling/rate performances compared with their counterparts derived from Mn-BTC(H_(3)BTC=1,3,5-benzenetricarboxylicacid)and Mn-PTC(H_(4)PTC=pyromellitic acid).Both experimental and theoretical studies elucidate the efficacious activation of primitive LMO materials toward advanced lithium storage by importing oxygen deficiencies.Impressively,O_v-LMO derived from Mn-BDC(O_v-BDC-LMO)delivered intriguing reversible capacities(179.2 mA h g^(-1)at 20 mA g^(-1)after 200 cycles and 100.1 mA h g^(-1)at 80 mA g^(-1)after 300 cycles),which can be attributed to the small particle size that shortens pathways for Li+/electron transport,the enhanced redox activity induced by abundant oxygen vacancies,and the optimized electronic configuration that contributes to the faster lithium diffusivity.This work provides insights into the rational design of LMO by morphological and atomic modulation to direct its activation and practical application as an advanced LIB cathode.
基金provided by the Bursa Technical University Scientific Research Project(Project no:211N010)College of Agriculture at Purdue University。
文摘Ciprofloxacin(CIP)is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections.When CIP is discharged into the sewage system,it cannot be removed by a conventional wastewater treatment plant because of its recalcitrant characteristics.In this study,boron-doped diamond anode and persulfate were used to degrade CIP in an aquatic solution by creating an electrochemically activated persulfate(EAP)process.Ironwas added to the system as a coactivator and the process was called EAP+Fe.The effects of independent variables,including pH,Fe^(2+),persulfate concentration,and electrolysis time on the systemwere optimized using the response surface methodology.The results showed that the EAP+Fe process removed 94%of CIP under the following optimum conditions:A pH of 3,persulfate/Fe^(2+)concentration of 0.4 mmol/L,initial CIP concentration 30 mg/L,and electrolysis time of 12.64 min.CIP removal efficiency was increased from 65.10%to 94.35%by adding Fe^(2+)as a transition metal.CIP degradation products,7 pathways,and 78 intermediates of CIP were studied,and three of those intermediates(m/z 298,498,and 505)were reported.The toxicological analysis based on toxicity estimation software results indicated that some degradation products of CIP were toxic to targeted animals,including fathead minnow,Daphnia magna,Tetrahymena pyriformis,and rats.The optimumoperation costswere similar in EAP and EAP+Fe processes,approximately 0.54€/m^(3).