期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Microstructure and electrochemical characteristics of nonstoichiometric La-rich AB_5-type alloy for Ni/MH battery electrode
1
作者 MAZhihong QIUJufeng +1 位作者 CHENLixin LEIYongquan 《Rare Metals》 SCIE EI CAS CSCD 2005年第1期65-70,共6页
The nonstoichiometric La-rich mischmetal (designated by MI)-based hydrogen storage alloy with a composition of MI(Ni0.64Co0.2Mn0.12Al0.04)(4.76) was prepared by arc melting and annealed at 1173 K for 10 h to investiga... The nonstoichiometric La-rich mischmetal (designated by MI)-based hydrogen storage alloy with a composition of MI(Ni0.64Co0.2Mn0.12Al0.04)(4.76) was prepared by arc melting and annealed at 1173 K for 10 h to investigate the effect of annealing treatment on the microstructure and electrochemical characteristics of the alloy. X-ray diffraction analysis showed that annealing can cause a release of the crystal lattice strain and an increase in amounts of the La2Ni7-type second phase in MI(Ni0.64Co0.20Mn0.12Al0.04)(4.76) alloy. Scanning electron microscopy and electron probe microanalysis examinations indicated that annealing leads to disappearance of the dendrite structure in the as-cast alloy, growth of crystal grain, and decrease of composition segregation. The annealing at 1173 K for 10 h flattened and extended the potential plateau and increased the maximum discharge capacity to 328 mA center dot h/g from 310 mA center dot h/g and the cycling life. The mechanism of the improvement in electrochemical characteristics was discussed based on the alloy microstructure change induced by annealing. 展开更多
关键词 metal material MICROSTRUCTURE electrochemical characteristics ANNEALING nonstoichiometric LaNi5-type alloy Ni/MH battery electrode
下载PDF
Phase Structure and Electrochemical Characteristics of Ml(Ni_(3.55)Co_(0.75)Mn_(0.40)Al_(0.30))_(5x)(x=0.88,0.92,0.96,1.00) Hydrogen Storage Alloys
2
作者 关巍 韩树民 +4 位作者 谢丹阳 李媛 李明 毛丽荣 扈琳 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第2期227-231,共5页
The phase structure and electrochemical characteristics of Ml ((Ni3.55Co0.75Mn0.40Al0.30)sx ( x = 0.88, 0.92, 0.96, 1.00) hydrogen storage alloys were studied. The effect of the stoichiometric ratio on the phase ... The phase structure and electrochemical characteristics of Ml ((Ni3.55Co0.75Mn0.40Al0.30)sx ( x = 0.88, 0.92, 0.96, 1.00) hydrogen storage alloys were studied. The effect of the stoichiometric ratio on the phase structure and electrochemical characteristics was analyzed. The results of XRD reveal that all the alloys consist mainly of LaNi5 phase with the hexagonal CaCu5 structure. But a few of the diffraction peaks of La2Ni7 phase on XRD pattern are observed when x ≤ 0.92, and with decreasing x, the intensity of La2Ni7 diffraction peaks increases and the values of lattice parameters a and cell volume increase, c and c/a of LaNi5 phase decrease gradually. When x≥0.96, La2Ni7 phase disappears and the alloys become single CaCu5-type. The electrochemical tests show that the maximum discharge capacity, high rate dischargeability and low temperature dischargeability are improved to different degrees by adjusting the stoichiometric ratio. 展开更多
关键词 hypo-stoichiometric ratio hydrogen storage alloys phase structure electrochemical characteristics rare earths
下载PDF
Preparation and electrochemical characteristics of Co_3(PO_4)_2-coated LiNi_(0.8)Co_(0.2)O_2 by solid-state reaction at room temperature
3
作者 DENG Xinrong HU Guorong PENG Zhongdong YANG Yanan CAO Yanbing DU Ke 《Rare Metals》 SCIE EI CAS CSCD 2008年第5期502-506,共5页
LiNi0.8Co0.2O2 particles were modified by Co3(PO4)2 coating. The effects of the Co3(PO4)2 coating on the structure and electrochemical properties of the LiNi0.8Co0.2O2 cathode material were investigated. The Co3... LiNi0.8Co0.2O2 particles were modified by Co3(PO4)2 coating. The effects of the Co3(PO4)2 coating on the structure and electrochemical properties of the LiNi0.8Co0.2O2 cathode material were investigated. The Co3(PO4)2 coating forms a thin layer on the surface of the LiNi0.8Co0.2O2 material and a solid solution by interacting with the LiNi0.8Co0.2O2 core material during calcination at 700℃ for 4 h. Charge-discharge experiment results show that the Co3(PO4)2 coating improves the cycling stability of the LiNi0.8Co0.2O2 cathode material. The capacity retention of the pristine LiNi0.8Co0.2O2 cathode after 50 cycles is 83.6%, whereas it is 91.7% in the case of the LiNi0.8Co0.2O2 cathode coated with 1 wt.% Co3(PO4)2. Storage tests of the 4.35 V charged electrode at 60℃ after a month show that the Co3(POg)2-coated sample exhibits good storage properties compared with the pristine sample. 展开更多
关键词 lithium ion battery coating solid-state reaction Co3(PO4)2 electrochemical characteristics
下载PDF
Microstructure and Electrochemical Characteristics of Melt-Spinning Alloy Ml(NiCoMnAl)_5
4
作者 WEN Ming fen 1,2 , CHEN Lian 1, TONG Min 1, CHEN De min 1, ZHAI Yu chun 2 ( 1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China 2. Department of Materials and Metallurgy, Northeastern University, Shenyang 11000 《Journal of Rare Earths》 SCIE EI CAS CSCD 2001年第1期80-80,共1页
The microstructure and electrochemical characteristics of Ml(NiCoMnAl) 5 alloys prepared by both the melt spinning method and the conventional induction melting were investigated and compared. SEM and XRD studies sh... The microstructure and electrochemical characteristics of Ml(NiCoMnAl) 5 alloys prepared by both the melt spinning method and the conventional induction melting were investigated and compared. SEM and XRD studies show that the microstructure of melt spinning alloys is columnar structure. With increasing melt spinning rate, the crystal grains become finer and preferentially grow along (111)[111] direction. The melt spinning and cast alloys belong to CaCu 5 type hexagonal crystal structure. The electrochemical measurements show that the initial capacities of melt spinning alloy electrodes are all above 210 mAh·g -1 with good activation behavior, reaching their maximum capacities after two charge discharge cycles. The maximum capacity (294 mAh·g -1 ) of melt spinning (10 m·s -1 ) alloy electrodes is as the same as that of as cast alloy electrode, and stability of charge discharge cycles of all melt spinning alloy electrodes is better than that of the as cast alloy electrodes. When charged at 600 mA·g -1 , the capacity of melt spinning (10 m·s -1 ) alloy electrode could reach 65% of its maximum capacity about 45 min with high rate discharge capability; but with the cycle number increasing, the stability of its capacity is less than that electrodes of melt spinning rate. 展开更多
关键词 rare earths melt spinning method hydrogen storage alloy electrode electrochemical characteristics columnar structure
下载PDF
MICROSTRUCTURE AND ELECTROCHEMICAL CHARACTERISTICS OF Zr_(0.9)Ti_(0.1)(Ni_(1.1)Mn_(0.7)V_(0.2))_x METAL HYDRIDE ELECTRODE
5
作者 S.M.Han M.S.Zhao Y.Z.Zeng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第3期192-196,共5页
The crystal structure, the phase composition and the electrochemical characteristics of Zr0.9Ti0.1(Ni1.1Mn0.7V0.2)x (x=0.90, 0.95, 1.00, 1.05) alloys were investigated by means of XRD, SEM, EDS and electrochemical mea... The crystal structure, the phase composition and the electrochemical characteristics of Zr0.9Ti0.1(Ni1.1Mn0.7V0.2)x (x=0.90, 0.95, 1.00, 1.05) alloys were investigated by means of XRD, SEM, EDS and electrochemical measurements. It was shown that all alloys are multiphase with C15 Laves phase as a main phase along with C14 phase and some secondary phases. And the amounts of the C14 phase and secondary phases in the four alloys increases with decreasing x. The results indicated that the various stoichiometric ratios have great effects on the electrochemical characteristics such as the maximum discharge capacity, discharge rate capability and self-discharge properties etc. for Zr0.9Ti0.1(Ni1.1Mn0.7 V0.2)X (x=0.90, 0.95, 1.00, 1.05) alloys. The hyper-stoichiometric Zr0.9 Ti0.1(N1.1Mn0.7 V0.20)1.05 exhibits the maximum discharge capacity of 332mAh-g-1. The C14 phase and secondary phases seems to improve discharge rate capability of the alloys. 展开更多
关键词 metal hydride electrode MICROSTRUCTURE electrochemical characteristics non-stoichiometric ratio
下载PDF
Composition optimization and electrochemical characteristics of Co-free Fe-containing AB_5-type hydrogen storage alloys through uniform design 被引量:6
6
作者 晁栋梁 陈云贵 +2 位作者 朱昌荣 吴朝玲 朱丁 《Journal of Rare Earths》 SCIE EI CAS CSCD 2012年第4期361-366,共6页
In order to reduce the cost of ABs-type hydrogen storage alloys, effects of substitution of Ce for La (A side) and Fe, Mn, Al for Ni (B side) on structural and electrochemical properties of (LaCe);(NiFeMnAl)s ... In order to reduce the cost of ABs-type hydrogen storage alloys, effects of substitution of Ce for La (A side) and Fe, Mn, Al for Ni (B side) on structural and electrochemical properties of (LaCe);(NiFeMnAl)s alloys were studied systematically. To make component uniform and operation easy, uniform design (UD) method was introduced into the study of composition optimization of Co-free Fe-containing ABs-type alloys for the first time. X-ray diffraction (XRD) results showed that the designed alloys were of single CaCus-type structure phase. The replacement of Fe had a severe effect on electrochemical capacity, and the substitution of Fe and A1 had a synergetic action among the unit cell volume, cycling stability and high rate discharge property. Interestingly, it was found that the hydrogen storage alloys with excessively high plateau pressure showed a tilted line in Nyquist plot instead of the semicircle, and the current decayed rapidly to near zero at the beginning of the step in constant potential step (CPS), indicating that electrochemical impedance spectra (EIS) and CPS cannot accurately measure the electrochemical kinetics process of the hydrogen storage alloys with excessively high plateau pressure. 展开更多
关键词 hydrogen storage alloy CO-FREE Fe-containing composition optimization electrochemical characteristics uniform design rare earths
原文传递
Electrochemical characteristics and synergetic effect of Ti_(0.10)Zr_(0.15)V_(0.35)Cr_(0.10)Ni_(0.30)-10 wt.%LaNi_5 hydrogen storage composite electrode 被引量:2
7
作者 王艳芝 赵敏寿 《Journal of Rare Earths》 SCIE EI CAS CSCD 2012年第2期146-150,共5页
In order to improve performance of Ti-V-based solid solution alloy, electrochemical characteristics and synergetic effect of Ti0.10Zr0.15V0.35Cr0.10Ni0.30-10 wt.%LaNi5 hydrogen storage composite electrode prepared by ... In order to improve performance of Ti-V-based solid solution alloy, electrochemical characteristics and synergetic effect of Ti0.10Zr0.15V0.35Cr0.10Ni0.30-10 wt.%LaNi5 hydrogen storage composite electrode prepared by two-step arc-melting were investigated system-atically. X-ray diffractometry (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) showed that the main phase of composite alloy was composed of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure, while secondary phase also existed in the composite alloy. The results showed that electrochemical characteristics of the composite alloy elec-trode were significantly improved. It was suggested that synergetic effect appeared in the maximum discharge capacity of the composite alloy, synergetic effect of the discharge capacity appeared in the activation process, in the composite process, in the cyclic process, in the discharge process at low/high temperature and at different current densities, and synergetic effect existed in the charge-transfer resistance and in the ex-change current density, which seemed to be related to formation of the secondary phase. 展开更多
关键词 hydrogen storage alloy Ti-V-based solid solution composite alloy electrochemical characteristics synergetic effect rare earths
原文传递
Electrochemical Characteristics and Applications of Boron-Doped Polycrystalline Diamond Film Electrodes 被引量:2
8
作者 Zhu Jianzhong Lu Deren Zhang Guoxiong (State Key Laboratory of Transducer Technology,Shanghai Institute of Metallurgy) 《Advances in Manufacturing》 SCIE CAS 1998年第4期53-57,共5页
The elcetrochemical characteristics of boron doped polycrystalline diamond thin film (BDF) electrode 4×4 mm 2 in size were studied using cyclic voltammetry and potentiostatic method. The diamond electrode exhib... The elcetrochemical characteristics of boron doped polycrystalline diamond thin film (BDF) electrode 4×4 mm 2 in size were studied using cyclic voltammetry and potentiostatic method. The diamond electrode exhibits adequate electrochemical activity and its response current changes linearly with K 3Fe(CN) 6 concentrations. The response current is proportional to the square root of the scan rate, reflecting mass transport controlled by planar diffusion. Stable mass transport can be quickly established within 4s. The BDF electrode provides good resolving power for the determination of lead and cadmium and gives satisfactory results in the analysis of pure water sample. 展开更多
关键词 diamond film electrode electrochemical characteristics anodic stripping
下载PDF
Electrochemical reduction characteristics and mechanism of nitrobenzene compounds in the catalyzed Fe-Cu process 被引量:7
9
作者 XU Wen-ying FAN Jin-hong GAO Ting-yao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第2期379-387,共9页
The reduction of the nitrobenzene compounds (NBCs) by the catalyzed Fe-Cu process and the relationship between the electrochemical reduction characteristics of NBCs at copper electrode and reduction rate were studie... The reduction of the nitrobenzene compounds (NBCs) by the catalyzed Fe-Cu process and the relationship between the electrochemical reduction characteristics of NBCs at copper electrode and reduction rate were studied in alkaline medium(pH=11). The catalyzed Fe-Cu process was found more effective on degradation of NBCs compared to Master Builder's iron. The reduction rate by the catalyzed Fe-Cu process decreased in the following order: nitrobenzene 〉4-chloro-nitrobenzene ≥m-dinitrobenzene :〉 4-nitrophenol ≥2,4-dinitrotoluene 〉2-nitrophenol. The reduction rate by Master Builder's iron decreased in the following order: m-dinitrobenzene ≥4-chloro-nitrobenzene 〉4-nitrophenol 〉2,4-dinitrotoluene ≈nitrobenzene 〉2-nitrophenol. NBCs were reduced directly on the surface of copper rather than by the hydrogen produced at cathode in the catalyzed Fe-Cu process. The reduction was realized by the hydrogen produced at cathode and Fe(OH)2 in Master Builder's iron, It is an essential difference in reaction mechanisms between these two technologies. For this reason, the reduction by the catalyzed Fe-Cu depended greatly on NBC's electron withdrawing ability. 展开更多
关键词 wastewater contaminated by NBCs electrochemical reduction characteristics catalyzed Fe-Cu process reduction mechanism
下载PDF
Effects of Ti and Co on the Electrochemical Characteristics of MgNi-Based Alloy Electrodes
10
作者 冯艳 焦丽芳 +1 位作者 袁华堂 赵明 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2007年第9期1278-1281,共4页
Mg-based hydrogen storage alloys MgNi, Mg0.9Ti0.1Ni and Mg0.9Ti0.1Ni0.9Co0.1 were successfully prepared by means of mechanical alloying (MA). The structure and the electrochemical characteristics of these Mg-based m... Mg-based hydrogen storage alloys MgNi, Mg0.9Ti0.1Ni and Mg0.9Ti0.1Ni0.9Co0.1 were successfully prepared by means of mechanical alloying (MA). The structure and the electrochemical characteristics of these Mg-based materials were also studied. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the main phases of the alloys exhibit amorphous structures, and trace of Ni co-exists. The charge-discharge cycle tests indicate these alloys have good electrochemical active characteristics. And the cycle stability of Ti and Co doped alloy was better than that of MgNi alloy. After 50 cycle charge-discharge, the discharge capacity of the Mg0.9Ti0.1Ni0.9Co0.1 alloy was much better than that of MgNi and Mg0.9Ti0.1Ni alloys. The discharge capacity of Mg0.9Ti0.1Ni0.9Co0.1 was 102.8% higher than that of MgNi alloy, and 45.49% higher than that of the Mg0.9Ti0.1Ni alloy. During the process of charge-discharge cycle test, the main reason for the electrode capacity fading is the corrosion of Mg to Mg(OH)2 on the surface of alloys. The Tafel polarization test indicates Ti and Co improve the anticorrosion in an alkaline solution. The EIS results suggest that proper amount of Ti and Co doping improve the electrochemical catalytical activity on the Mg-based alloy surface significantly. 展开更多
关键词 Mg-based hydrogen storage electrochemical characteristic cycle stability ANTICORROSION
原文传递
How do high-voltage cathode and PEO electrolyte get along well?EIS analysis mechanism&potentiometric control strategy
11
作者 Xiaodong Bai Chaoliang Zheng +4 位作者 Heng Zhang Jian Liu Panpan Wang Baojia Xia Jianling Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期424-436,共13页
PEO-based all-solid-state electrolytes are extensively utilized and researched owing to their exceptional safety,low-mass-density,and cost-effectiveness.However,the low oxidation potential of PEO makes the interface p... PEO-based all-solid-state electrolytes are extensively utilized and researched owing to their exceptional safety,low-mass-density,and cost-effectiveness.However,the low oxidation potential of PEO makes the interface problem with the high-voltage cathode extremely severe.In this work,the impedance of PEO-based all-solid-state batteries with high-voltage cathode(NCM811)was studied at different potentials.The Nyquist plots displayed a gyrate arc at low-frequencies for NCM811/PEO interface.Based on the kinetic modeling,it was deduced that there is a decomposition reaction of PEO-matrix in addition to de-embedded reaction of NCM811,and the PEO intermediate product(dehydra-PEO)adsorbed on the electrode surface leading to low-frequency inductive arcs.Furthermore,the distribution of relaxation time shows the dehydra-PEO results in the kinetic tardiness of the charge transfer process in the temporal dimension.Hence,an artificial interface layer(CEI_(x))was modified on the surface of NCM811 to regulate the potential of cathode/electrolyte interface to prevent the high-voltage deterioration of PEO.NCM/CEI_(x)/PEO batteries exhibit capacity retentions of 96.0%,84.6%,and 76.8%after undergoing 100 cycles at cut-off voltages of 4.1,4.2,and 4.3 V,respectively.Therefore,here the failure mechanism of high-voltage PEO electrolyte is investigated by EIS and a proposed solving strategy is presented. 展开更多
关键词 PEo-based electrolyte High-voltage cathode electrochemical impedance spectroscopy Mechanism research electrochemical characteristic
下载PDF
Effect of electrolyte concentration on low-temperature electrochemical properties of LaNi_5 alloy electrodes at 233 K 被引量:2
12
作者 张晓燕 陈云贵 +1 位作者 陶明大 吴朝玲 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第3期402-405,共4页
The effect of KOH electrolyte concentration on low-temperature electrochemical properties of LaNi5 alloy electrodes at 233 K was studied. The results indicated that the electrolyte concentration had great influence on... The effect of KOH electrolyte concentration on low-temperature electrochemical properties of LaNi5 alloy electrodes at 233 K was studied. The results indicated that the electrolyte concentration had great influence on discharge capacity and discharge voltage plateau of LaNi5 alloy electrode at 233 K, and the highest discharge capacity and discharge voltage plateau were both obtained at 6 mol/L KOH. When the KOH electrolyte concentration changed from 5 to 9 mol/L at 233 K, the high rate discharge ability (HRD) had the same change tendency as the diffusion coefficient, but the exchange current density did not change significantly, which implied that hydrogen diffusion was the control step at low temperature 233 K for discharge process of LaNi5 alloy electrode. 展开更多
关键词 hydrogen storage alloy low-temperature electrochemical characteristic LaNis rare earths
下载PDF
Microstructures and Electrochemical Properties of Cobalt-Free LaNi_(4.0)Al_(0.2)Fe_(0.4)Cu_(0.4-x)Sn_x (x=0~0.4) Electrode Alloys Prepared by Casting 被引量:2
13
作者 任江远 张羊换 +3 位作者 冯猛 王国清 赵小龙 王新林 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第5期574-578,共5页
The microstructure, hydriding performance, and electrochemical properties of LaNi4.0Ai0.2Fe0.4Cu0.4-x Snx(x = 0- 0.4) hydrogen storage alloys prepared by casting were investigated using XRD, SEM, pressure-compositio... The microstructure, hydriding performance, and electrochemical properties of LaNi4.0Ai0.2Fe0.4Cu0.4-x Snx(x = 0- 0.4) hydrogen storage alloys prepared by casting were investigated using XRD, SEM, pressure-composition isotherms, and electrochemical measurements. Substitution of Sn for Cu leads to the precipitation of LaNiSn phase. With increasing amount of tin substitution, cell volume, plateau pressures, and discharge capacities of the alloys decrease, whereas the cycle life of the alloys improves. 展开更多
关键词 substitution of Cu with Sn microstructure PCT characteristics electrochemical properties rare earths
下载PDF
Electrochemical Behavior of Antimierobial Stainless Steel Bearing Copper in Sulfate Reducing Bacterial Medium
14
作者 王华 LIANG Chenghao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第1期113-117,共5页
The electrochemical characteristic of antimicrobial stainless steel bearing copper NSSAM3 in sulfate reducing bacterial (SRB) was investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic po... The electrochemical characteristic of antimicrobial stainless steel bearing copper NSSAM3 in sulfate reducing bacterial (SRB) was investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The results show that inoculation of SRB into the culture medium significantly affects the anodic polarization behavior of NSSAM3 and accelerates anodic depolarization process, however, it has little effect on cathodic polarization curves of NSSAM3. Under the same exposure time, the anodic polarization curves of NSSAM3 in culture medium with SRB are in anodic active dissolution state when anodic polarization potential value is below 0 V(SCE), whose anodic polarization current density is bigger than that of in culture medium without SRB. Moreover, when the concentration of Cu^2+ in SRB medium increases, anodic polarization current density of NSSAM3 decreases and polarization resistance increases with increasing time. Scanning electron microscope (SEM) observations indicate that SRB unevenly attaches on the surface of NSSAM3, and induces the sensitivity to local corrosion. 展开更多
关键词 antimicrobial stainless steel sulfate reducing bacterial electrochemical characteristic electrochemical impedance spectroscopy
下载PDF
Electrochemical and spectroscopic characteristics of dissolved organic matter in a forest soil profile 被引量:11
15
作者 Ran Bi Qin Lu +3 位作者 Tian Yuan Shungui Zhou Yong Yuan Yanfei Cai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第10期2093-2101,共9页
Dissolved organic matter (DOM) represents one of the most mobile and reactive organic compounds in ecosystem and plays an important role in the fate and transport of soil organic pollutants, nutrient cycling and mor... Dissolved organic matter (DOM) represents one of the most mobile and reactive organic compounds in ecosystem and plays an important role in the fate and transport of soil organic pollutants, nutrient cycling and more importantly global climate change. Electrochemical methods were first employed to evaluate DOM redox properties, and spectroscopic approaches were utilized to obtain information concerning its composition and structure. DOM was extracted from a forest soil profile with five horizons. Differential pulse voltammetry indicated that there were more redox-active moieties in the DOM from upper horizons than in that from lower horizons. Cyclic voltammetry further showed that these moieties were reversible in electron transfer. Chronoamperometry was employed to quantify the electron transfer capacity of DOM, including electron acceptor capacity and electron donor capacity, both of which decreased sharply with increasing depth. FT-IR, UV-Vis and fluorescence spectra results suggested that DOM from the upper horizons was enriched with aromatic and humic structures while that from the lower horizons was rich in aliphatic carbon, which supported the findings obtained by electrochemical approaches. Electrochemical approaches combined with spectroscopic methods were applied to evaluate the characteristics of DOM extracted along a forest soil profile. The electrochemical properties of DOM, which can be rapidly and simply obtained, provide insight into the migration and transformation of DOM along a soil profile and will aid in better understanding of the biogeochemical role of DOM in natural environments. 展开更多
关键词 dissolved organic matter electrochemical characteristics soil profile spectroscopic characteristics
原文传递
Structure and electrochemical hydrogen storage characteristics of the as-cast and annealed La_(0.8-x)SmxMg_(0.2)Ni_(3.15)Co_(0.2)Al_(0.1)Si_(0.05) (x=0-0.4) alloys 被引量:8
16
作者 李平 候忠辉 +3 位作者 杨泰 尚宏伟 曲选辉 张羊换 《Journal of Rare Earths》 SCIE EI CAS CSCD 2012年第7期696-704,共9页
In order to ameliorate the electrochemical cycle stability of the RE-Mg-Ni based A2B7-type electrode alloys, the Mg content in the alloy was reduced and La in the alloy was partially substituted by Sm. The La0.8-xSmxM... In order to ameliorate the electrochemical cycle stability of the RE-Mg-Ni based A2B7-type electrode alloys, the Mg content in the alloy was reduced and La in the alloy was partially substituted by Sm. The La0.8-xSmxMg0.2Ni3.15Co0.2Al0.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4) elec-trode alloys were fabricated by casting and annealing. The microstructures of the as-cast and annealed alloys were characterized by XRD and SEM. The electrochemical hydrogen storage characteristics of the as-cast and annealed alloys were measured. The results revealed that all of the experimental alloys mainly consisted of two phases: (La,Mg)2Ni7 phase with the hexagonal Ce2Ni7-type structure and LaNi5 phase with the hexagonal CaCu5-type structure. As Sm content grew from 0 to 0.4, the discharge capacity and the high rate discharge ability (HRD) first in-creased and then decreased for the as-cast and annealed alloys, whereas the capacity retaining rate (S100) after 100 cycles increased continuously. 展开更多
关键词 A2B7-type electrode alloy substitution La with Sm STRUCTURE electrochemical characteristics rare earths
原文传递
The electrochemical hydrogen storage characteristics of as-spun nanocrystalline and amorphous Mg_(20)Ni_(10-x)M_x(M=Cu, Co, Mn;x=0–4) alloys 被引量:4
17
作者 Yang-Huan Zhang Tai Yang +3 位作者 Hong-Wei Shang Chen Zhao Chao Xu Dong-Liang Zhao 《Rare Metals》 SCIE EI CAS CSCD 2014年第6期663-673,共11页
In this paper, we comprehensively investigate the influences of M(M=Cu, Co, Mn) substitution for Ni on the structures and electrochemical hydrogen storage characteristics of the nanocrystalline and amorphous Mg20Ni1... In this paper, we comprehensively investigate the influences of M(M=Cu, Co, Mn) substitution for Ni on the structures and electrochemical hydrogen storage characteristics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu, Co, Mn; x = 0–4) alloys prepared by melt spinning. The as-spun(M=None, Cu) alloys display an entire nanocrystalline structure, whereas the as-spun(M=Co, Mn) alloys hold a mixed structure of both nanocrystalline and amorphous when x = 4(M content). These results indicate that the substitution of M(M=Co, Mn) for Ni facilitates the glass formation in Mg2Ni-type alloy. All the as-spun alloys have the Mg2 Ni major phase, but M(M=Co, Mn) substitution brings on some secondary phases,such as Mg Co2, Mg phases for M=Co, and Mn Ni, Mg phases for M=Mn. The substitution of M(M=Cu, Co, Mn)for Ni also makes a positive contribution to the cycle stability of the alloys in the following orders:(M=Cu) [(M=Co) [(M=Mn) for x = 1 and(M=Co) [(M=Mn)[(M=Cu) for x = 2–4. Meanwhile, it notably enhances the discharge capacity of the alloys in the sequence of(M=Co) [(M=Mn) [(M=Cu). As for the high rate discharge ability, it visibly upgrades with the growing of M content for(M=Cu, Co), while it grows at first and then declines for(M=Mn). 展开更多
关键词 Mg2Ni-type alloy Element substitution Melt spinning Nanocrystalline and amorphous electrochemical characteristics
原文传递
Effects of Ti and Zr Substituted on the Electrochemical Characteristics of MgNi-Based Alloy Electrodes
18
作者 冯艳 焦丽芳 +1 位作者 袁华堂 赵明 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2007年第2期172-175,共4页
Mg-based hydrogen storage alloys MgNi, Mg0.9Ti0.1Ni, and Mg0.9Ti0.06Zr0.04Ni were successfully prepared by means of mechanical alloying (MA). The structure and the electrochemical characteristics of these Mg-based m... Mg-based hydrogen storage alloys MgNi, Mg0.9Ti0.1Ni, and Mg0.9Ti0.06Zr0.04Ni were successfully prepared by means of mechanical alloying (MA). The structure and the electrochemical characteristics of these Mg-based materials were studied. The X-ray diffraction (XRD) result shows that the main phases of the alloys exhibit amorphous structure. The scanning electron microscopy (SEM) photograph shows that the particle size of Ti and Zr substituted alloys was about 2-4 μm in diameter. The cycle lives of the alloys were prolonged by adding Ti and Zr. After 50 charge-discharge cycles, the discharge capacity of Mg0.9Ti0.06Zr0.04Ni was 91.74% higher than that of MgNi alloy and 37.96% higher than that of Mg0.9Ti0.1Ni alloy. The main reason for the electrode capacity decay is the formation of Mg(OH)2 (product of Mg corrosion) at the surface of alloy. The potentiodynamic polarization result indicates that Ti and Zr doping improves the anticorrosion in an alkaline solution. The electrochemical impedance spectroscopy (EIS) results suggest that proper amount of Ti and Zr doping improves the electrochemical catalytic activity significantly. 展开更多
关键词 Mg-based hydrogen storage electrochemical characteristics cycle stability Ti and Zr substitution
原文传递
Dechlorination of carbon tetrachloride by the catalyzed Fe-Cu process 被引量:16
19
作者 XU Wen-ying GAO Ting-yao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第7期792-799,共8页
The dectrochemical reduction characteristics of carbon tetrachlofide (CT) were investigated using cyclic voltammetry in this study. In addition, the difference in reduction mechanisms of CT between Master Builders'... The dectrochemical reduction characteristics of carbon tetrachlofide (CT) were investigated using cyclic voltammetry in this study. In addition, the difference in reduction mechanisms of CT between Master Builders' iron and the catalyzed Fe-Cu process was discussed. The results showed that CT was reduced directly on the surface of copper rather than by atomic hydrogen produced at the cathode in the catalyzed Fe-Cu process. The reduction was realized largely by atomic hydrogen in Master Builders' iron. The entire CT in 350 ml aqueous solution with 320 mg/L was reduced to trichloromethane and dichloromethane in 2.25 h when 100 g of scrap iron with Fe/Cu ratio of 10:1 (w/w) were used. Moreover, the reduction rate slowed with time. CT could be reduced at acidic, neutral and alkaline pH from solution by Fe-Cu bimetallic media, but the mechanisms were different. The degradation rate was not significantly influenced by pH in the catalyzed Fe-Cu process; in Master Builders' iron it clearly increased with decreasing pH. The kinetics of the reductions followed pseudo-first order in both cases. Furthermore, the reductions under acidic conditions proceeded faster than that under the neutral and alkaline conditions. The catalyzed Fe-Cu process was superior to Master Builders' iron in treating CT-containing water and this advantage was particularly noticeable under alkaline conditions. The reduction was investigated in the cathode (Cu) and anode (Fe) compartments respectively, the results showed that the direct reduction pathway played an important role in the reduction by the catalyzed Fe-Cu process. The catalyzed Fe-Cu process is of practical value. 展开更多
关键词 carbon tetrachloride electrochemical reduction characteristics catalyzed Fe-Cu process reduction mechanisms
下载PDF
Effect of La Addition on Electrochemical Properties of Amorphous LaMg_(11)Zr+200Ni Alloy
20
作者 刘子利 周桂斌 +1 位作者 闫新春 刘希琴 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第3期291-296,共6页
The effect of La addition on the structure and electrochemical properties of amorphous LaMg 11 Zr+200Ni(LaMg 11 Zr:Ni=1:2,m:m) hydrogen storage alloy prepared by mechanical alloying was investigated systematically.The... The effect of La addition on the structure and electrochemical properties of amorphous LaMg 11 Zr+200Ni(LaMg 11 Zr:Ni=1:2,m:m) hydrogen storage alloy prepared by mechanical alloying was investigated systematically.The results show that the alloys have an amorphous structure after 20 h ball-milling and the particles are significantly refined with the addition of La.The electrochemical tests indicate that the charging resistance of the alloy electrodes decreases with the addition of La.The maximum discharge capacity of the alloy electrodes increases with the increase of La addition,while the cyclic stability and high-rate discharge performance increase firstly and then decrease as the La content increases.When the mass fraction of La is up to 5%,the maximum discharge capacity after charging/discharging of 30 cycles of the alloy electrode is increased from 576.2 to 597.5 mA.h/g,and the capacity retention rate and high-rate dischargeability(HRD) of the alloy electrode are increased by 20.5% and 29.4% respectively compared with those of the alloy electrode without the La addition,exhibiting the best comprehensive electrochemical performances. 展开更多
关键词 hydrogen storage alloy La addition phase structure electrochemical characteristics
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部