Electrochemical deposition and nucleation of aluminum on tungsten electrode from AlCl3-NaCl melts were studied by cyclic voltammetry, chronopotentiometry and chronoamperometry. Cyclic voltammetry and chronopotentiomet...Electrochemical deposition and nucleation of aluminum on tungsten electrode from AlCl3-NaCl melts were studied by cyclic voltammetry, chronopotentiometry and chronoamperometry. Cyclic voltammetry and chronopotentiometry analyses showed that Al (Ⅲ) was reduced at 200℃ in two consecutive steps in an electrolyte of molten AlCl3-NaCl system with a composition 52:48 molar ratio. The current-time characteristics of nucleation aluminum on tungsten showed a strong dependence on overpotentials. Chronoamperometry showed that the deposition process of aluminum on tungsten was controlled by an instantaneous nucleation with a hemispherical diffusion-controlled growth mechanism. The results could lead to a better understanding of the AlCl3-NaCl melt system that has technological importance in electrodeposition of metals as well as in rechargeable batteries.展开更多
The superhydrophobicity of plant leaves is a benefit of the hierarchical structures of their surfaces. These structures have been imitated in the creation of synthetic surfaces. In this paper, a novel process for fabr...The superhydrophobicity of plant leaves is a benefit of the hierarchical structures of their surfaces. These structures have been imitated in the creation of synthetic surfaces. In this paper, a novel process for fabrication of biomimetic hierarchical structures by electrochemical deposition of a metal on porous alumina is described. An aluminum specimen was anodically oxidized to obtain a porous alumina template, which was used as an electrode to fabricate a surface with micro structures through electrochemical deposition of a metal such as nickel and copper after the enlargement of pores. Astonishingly, a hier- archical structure with nanometer pillars and micrometer clusters was synthesized in the pores of the template. The nanometer pillars were determined by the nanometer pores. The lbrmation of micrometer clusters was related to the thin walls of the pores and the crystallization of the metal on a flat surface. From the as-prepared biomimetic surfaces, lotus-leaf-like superhydrophobic surfaces with nickel and copper deposition were achieved.展开更多
The effects of the supporting reagents hexamethylenetetramine(HMTA)and potassium chloride(KCl)mixed in zinc nitrate hexahydrate(Zn(NO3)2 6H2O)on the morphological,structural,and optical properties of the resulting Zn ...The effects of the supporting reagents hexamethylenetetramine(HMTA)and potassium chloride(KCl)mixed in zinc nitrate hexahydrate(Zn(NO3)2 6H2O)on the morphological,structural,and optical properties of the resulting Zn O nanostructures electrodeposited on graphene/glass substrates were investigated.The supporting reagent HMTA does not increase the density of nanorods,but it does remarkably improve the smoothness of the top edge surfaces and the hexagonal shape of the nanorods even at a low temperature of 75°C.Hydroxyl(OH-)ions from the HMTA suppress the sidewall growth of non-polar planes and promote the growth of Zn O on the polar plane to produce vertically aligned nanorods along the c axis.By contrast,the highly electronegative chlorine(Cl-)ions from the supporting reagent KCl suppress the growth of Zn O on the polar plane and promote the growth on non-polar planes to produce vertical stacking nanowall structures.HMTA was found to be able to significantly improve the crystallinity of the grown Zn O structures,as indicated by the observation of much lower FWHM values and a higher intensity ratio of the emission in the UV region to the emission in the visible region.Equimolar mixtures of Zn(NO3)2 6H2O and the supporting reagents HMTA and KCl seem to provide the optimum ratio of concentrations for the growth of high-density,uniform Zn O nanostructures.The corresponding transmittances for such molar ranges are approximately 55–58%(HMTA)and 63–70%(KCl),which are acceptable for solar cell and optoelectronic devices.展开更多
A new basic electrolyte with two cationic plating additives, polydiaminourea and polyaminosulfone, was investigated for the electrochemical deposition of the bismuth telluride film on a nickel-plated copper foil. Tell...A new basic electrolyte with two cationic plating additives, polydiaminourea and polyaminosulfone, was investigated for the electrochemical deposition of the bismuth telluride film on a nickel-plated copper foil. Tellurium starts to deposit at a higher potential (-0.35 V) than bismuth (-0.5 V) in this electrolyte. The tellurium-to-bismuth ratio increases while the deposition potential declines from -1 to -1.25 V, indicating a kinetically quicker bismuth deposition at higher potentials. The as-deposited film features good adhesion to the substrate and smooth morphology, and has a nearly amorphous crystal structure disclosed by X-ray diffraction patterns.展开更多
The Ni-W gradient deposit with nano-structure was prepared by an electrochemical deposition method.X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDXA) indicate that the crystallite size of the deposit ...The Ni-W gradient deposit with nano-structure was prepared by an electrochemical deposition method.X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDXA) indicate that the crystallite size of the deposit decreases from 10.3nm to 1.5nm and the crystal grating aberrance increases with the increase of W content in the growing direction of the deposit. The structure of deposit changes from crystalline to amorphous stepwise with associated increase of crystal grating aberrance, and presents gradient distribution. These show that the deposit isgradient with nano-structure.展开更多
ZnO nanoparticles-embedded hydrogenated diamond-like carbon (ZnO-DLC) films have been prepared by electro- chemical deposition in ambient conditions. The morphology, composition, and microstructure of the films have...ZnO nanoparticles-embedded hydrogenated diamond-like carbon (ZnO-DLC) films have been prepared by electro- chemical deposition in ambient conditions. The morphology, composition, and microstructure of the films have been investigated. The results show that the resultant films are hydrogenated diamond-like carbon films embedded with ZnO nanoparticles in wurtzite structure, and the content and size of the ZnO nanoparticles increase with increasing deposition voltage, which are confirmed by X-ray photoelectron spectroscopy (XPS), Raman, and transmission electron microscope (TEM). Furthermore, a possible mechanism used to describe the growth process of ZnO-DLC films by electrochemical deposition is also discussed.展开更多
Self-powered photodetectors based on nanomaterials have attracted lots of attention for several years due to their various advantages.In this paper,we report a high performance Cu2O/ZnO self-powered photodetector fabr...Self-powered photodetectors based on nanomaterials have attracted lots of attention for several years due to their various advantages.In this paper,we report a high performance Cu2O/ZnO self-powered photodetector fabricated by using electrochemical deposition.ZnO nanowires arrays grown on indium-tin-oxide glass are immersed in Cu2O film to construct type-Ⅱband structure.The Cu2O/ZnO photodetector exhibits a responsivity of 0.288 mA/W at 596 nm without bias.Compared with Cu2O photoconductive detector,the responsivity of the Cu2O/ZnO self-powered photodetector is enhanced by about two times at 2 V bias.It is attributed to the high power conversion efficiency and the efficient separation of the photogenerated electron-hole pairs,which are provided by the heterojunction.The outstanding comprehensive performances make the Cu2O film/ZnO nanowires self-powered photodetector have great potential applications.展开更多
Europium bisphthalocyanine (EuPc2) nanowires were prepared by electrochemical deposition method. Scanning electron microscopy (SEM) images show the evolution of the morphologies of nanowires obtained under different ...Europium bisphthalocyanine (EuPc2) nanowires were prepared by electrochemical deposition method. Scanning electron microscopy (SEM) images show the evolution of the morphologies of nanowires obtained under different deposition time (Td). The optical properties of europium bisphthalocyanine films were studied by UV-Vis absorption spectra. The morphology of EuPc2 nanowires could be controlled by changing deposition conditions, which provides a useful method to make organic nanowires.展开更多
Several TAAFS (tetraalkylammonium hexafluorosilicates) with different cations were synthesized. Their thermal properties were studied showing that obtained complexes are stable enough to be suitable for electrochemi...Several TAAFS (tetraalkylammonium hexafluorosilicates) with different cations were synthesized. Their thermal properties were studied showing that obtained complexes are stable enough to be suitable for electrochemical deposition of silicon coatings under temperatures at least up to 200 ℃.展开更多
Superhydrophilic surfaces were fabricated on copper substrates by an electrochemical deposition and sintering process. Superhydrophobic surfaces were prepared by constructing micro/nano-structure on copper substrates ...Superhydrophilic surfaces were fabricated on copper substrates by an electrochemical deposition and sintering process. Superhydrophobic surfaces were prepared by constructing micro/nano-structure on copper substrates through an electrochemical deposition method. Conversion from superhydrophobic to superhydrophilic was obtained via a suitable sintering process. After reduction sintering, the contact angle of the superhydrophilic surfaces changed from 155° to 0°. The scanning electron microscope (SEM) images show that the morphology of superhydrophobic and superhydrophilic surfaces looks like corals and cells respectively. The chemical composition and crystal structure of these surfaces were examined using energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). The results show that the main components on superhydrophobic surfaces are Cu, Cu2O and CuO, while the superhydrophilic surfaces are composed of Cu merely. The crystal structure is more inerratic and the grain size becomes bigger after the sintering. The interracial strength of the superhydrophilic surfaces was investigated, showing that the interfacial strength between superhydrophilic layer and copper substrate is considerably high.展开更多
Doped/filled skutterudites are much studied materials due to their excellent thermoelectric performance.However,their synthesis and preparation is complicated.This work synthesized indium(In)doped cobalt triantimonide...Doped/filled skutterudites are much studied materials due to their excellent thermoelectric performance.However,their synthesis and preparation is complicated.This work synthesized indium(In)doped cobalt triantimonide(CoSb_(3))skutterudite thick films using a facile electrochemical deposition technique through chronoamperometric steps for 2 h.The nominal composition of In element is found in the range of 0.55e0.23 for a stoichiometric condition of In doped CoSb_(3)thick films.The early crystal growth of In doped films shows instantaneous nucleation and is controlled by the charge transfer process with diffusion coefficient,D of 10^(-5)cm^(2)/s.The incorporation of In into the interstitial sites of CoSb_(3)cages is evident from the lattice constant(a)expansion as observed in XRD.The optimum Seeback coefficient(S)of the 0.5 mmol In doped CoSb_(3)thick film is89.84 mV/K at 282 K,due to an increase in the carrier concentration(n~10^(20)cm^(-3)).The negative S is due to the electron donor behaviour of the In.Meanwhile,high electrical conductivity,s value(14.26 kS/m)contributes to a power factor(S2s)increment of 115.11 mW/(m$K2).The result shows a promising thermoelectric property of doped skutterudite synthesized by electrochemical deposition technique.展开更多
Flexible and micro-sized energy conversion/storage components are extremely demanding in portable and multifunctional electronic devices, especially those small,flexible, roll-up and even wearable ones. Here in this p...Flexible and micro-sized energy conversion/storage components are extremely demanding in portable and multifunctional electronic devices, especially those small,flexible, roll-up and even wearable ones. Here in this paper, a two-step electrochemical deposition method has been developed to coat Ni fibers with reduced graphene oxide and MnO2 subsequently, giving rise to Ni@reduced-graphene-oxide@MnO2 sheath-core flexible electrode with a high areal specific capacitance of 119.4 mF cm^-2 at a current density of 0.5 mA cm^-2 in 1 mol L^-1 Na2SO4 electrolyte. Using polyvinyl alcohol(PVA)-LiCl as a solid state electrolyte, two Ni@reduced-grapheneoxide@Mn02 flexible electrodes were assembled into a freestanding, lightweight, symmetrical fiber-shaped micro-supercapacitor device with a maximum areal capacitance of26.9 mF cm^-2. A high power density of 0.1 W cm^-3 could be obtained when the energy density was as high as0.27 mW h cm^-3. Moreover, the resulting micro-supercapacitor device also demonstrated good flexibility and high cyclic stability. The present work provides a simple, facile and low-cost method for the fabrication of flexible, lightweight and wearable energy conversion/storage micro-devices with a high-performance.展开更多
The objective of this study was to determine the role of functional groups of silane coupling on bioactive titanium (Ti) surface by electrochemical deposition, and calcium phosphate (CAP) coating, as well as bone ...The objective of this study was to determine the role of functional groups of silane coupling on bioactive titanium (Ti) surface by electrochemical deposition, and calcium phosphate (CAP) coating, as well as bone cell adhesion and proliferation. Methyl group (-CH3), amino group (-NH2), and epoxy group (-glyph name--C(O)C) were introduced onto the bioactive Ti surface using self-assembled monolayers (SAMs) with different silane coupling agents as molecular bridges. The effect of the surface functional groups on the growth features of the CaP crystals was analyzed (including chemical compositions, element content, minerals morphology and crystal structure etc.). CH3-terminated SAMs showed a hydrophobic surface and others were hydrophilic by contact angle measurement; NH2-terminated SAMs showed a positive charge and others were negatively charged using zeta-potential measurement. Scanning electron microscopy results confirmed that flower-like structure coatings consisting of various pinpoint-like crystals were formatted by different functional groups of silane coupling, and the CaP coatings were multicrystalline consisting of hydroxyapatite (HA) and precursors. CaP coating of CH3-terminated SAMs exhibited more excellent crystallization property as compared to coatings of --NH2 and -C(O)C groups. In vitro MC3T3- El cells adhesion and proliferation were performed. The results showed that CaP coatings on silane coupling functionalized surfaces supported cell adhesion and proliferation. Thus, these functional groups of silane coupling on Ti can form homogeneous and oriented nano-CaP coatings and provide a more biocompatible surface for bone regeneration and biomedical applications.展开更多
Thermal stability of perovskite materials is an issue impairing the long-term operation of inverted perovskite solar cells(PSCs). Herein, the thermal attenuation mechanism of the MAPb I3films that deposited on two dif...Thermal stability of perovskite materials is an issue impairing the long-term operation of inverted perovskite solar cells(PSCs). Herein, the thermal attenuation mechanism of the MAPb I3films that deposited on two different hole transport layers(HTL), poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS) and poly(3,4-ethylenedioxythiophene)(PEDOT), is comprehensively studied by applying a heat treatment at 85℃. The thermal stress causes the mutual ions migration of I, Pb and Ag through the device, which leads to the thermal decomposition of perovskite to form Pb I2. Interestingly, we find that I ions tend to migrate more towards electron transport layer(ETL) during heating, which is different with the observation of I ions migration towards HTL when bias pressure is applied. Moreover, the use of electrochemical deposited PEDOT as HTL significantly decreases the defect density of MAPb I3films as compared to PEDOT:PSS supported one. The electrochemical deposition PEDOT has good carrier mobility and low acidity, which avoids the drawbacks of aqueous PEDOT:PSS. Accordingly, the inverted PSCs based on PEDOT show superior durability than that with PEDOT:PSS. Our results reveal detailed degradation routes of a new kind of inverted PSCs which can contribute to the understanding of the failure of thermal-aged inverted PSCs.展开更多
The development of effective uranium-removal techniques is of great significance to the environment and human health.In this work,a double potential step technique(DPST)was applied to remove U(VI)from uranium-containi...The development of effective uranium-removal techniques is of great significance to the environment and human health.In this work,a double potential step technique(DPST)was applied to remove U(VI)from uranium-containing wastewater using a carbon felt electrode modified by graphene oxide/phytic acid composite(GO-PA@CF).The application of DPST can inhibit water splitting and prevent GO-PA from adsorbing other interfering ions in wastewater.The GO-PA composite can effectively accelerate the electrochemical reduction rate of U(VI),which significantly improved the electrochemical deposition rate of uranium oxide.As a result,the maximum removal efficiency and maximum removal capacity of GOPA@CF electrode reached 98.7%and 1149.3 mg/g,respectively.The removal efficiency remained 97.2%after five cycles of reuse.Moreover,the removal efficiency of GO-PA@CF electrode can reach more than 70%in simulated wastewater.展开更多
ZnO nanocrystals were prepared by a direct current electrochemical deposition process under 3.0V working voltage and 30A/m^2 current density using zinc sulfate as raw materials.The nanocrystals were characterized by X...ZnO nanocrystals were prepared by a direct current electrochemical deposition process under 3.0V working voltage and 30A/m^2 current density using zinc sulfate as raw materials.The nanocrystals were characterized by X-ray diffraction (XRD)and transmission electron microscopy(TEM).The results indicated that the nanocrystals are hexagonal wurtzite ZnO with particle size range of 25nm~40nm without any treating.Gas sensing properties of the sensors were tested by mixing a gas in air at static state;the tested results showed that the sensors based on nanocrystalline ZnO had satisfied gas sensing properties to H_2S gas at rather low temperature.展开更多
To improve corrosion inhibition performance of copper foil with a novel two-step electrochemical modification processes,the surface of 35μm copper foils was coated with graphene oxide(GO)via electrochemical method at...To improve corrosion inhibition performance of copper foil with a novel two-step electrochemical modification processes,the surface of 35μm copper foils was coated with graphene oxide(GO)via electrochemical method at first step,then was further coated with 3-aminopropyltrimethoxysilane(APTS)at the second step.For the first step the copper foil acted as anode,and as cathode for the second one(we labeled it as E-GO).Optimum coating parameters for the preparation of E-GO coating are 5 V and 1 min with ratio of APTS/deionized water(DI)1.5/98.5(v/v).The physicochemical properties of modified coating were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM)and hydrophilicity test.Electrochemical behavior of different samples were also investigated.The experimental results indicate that anti-corrosion performance is significantly improved with two-step modified coating.And E-GO coating shows more positive corrosion potential and the highest corrosion resistance rate than others according to the Tafel curve.It is also found that surface hydrophobicity of E-GO coating is significantly improved.展开更多
The ion selectivity of electrodeposited nickel hexacyanoferrate (NiHCF) thin films was investigated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). NiHCF thin films were prepared ...The ion selectivity of electrodeposited nickel hexacyanoferrate (NiHCF) thin films was investigated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). NiHCF thin films were prepared by cathodic deposition on Pt and Al substrates. EIS and CV curves were determined in 1 mol/L (KNO3+C5NO3) and 1 mol/L (NaNO3+CsNO3) mixture solutions, which were sensitive to the concentration of Cs^+ in the electrolytes. Experimental results show that all Nyquist impedance plots show depressed semicircles in the high-frequency range changing over into straight lines at lower frequencies. With increasing amounts of Cs^+, the redox potentials in CV curves shift toward more positive values and the redox peaks broaden; the semicircle radius in corresponding EIS curves and the charge transfer resistance also increase. EIS combining CV is able to provide valuable insights into the ion selectivity of NiHCF thin films. 2008 University of Science and Technology Beijing. All rights reserved.展开更多
The fabrication of pure copper microstructures with submicron resolution has found a host of applications,such as 5G communications and highly sensitive detection.The tiny and complex features of these structures can ...The fabrication of pure copper microstructures with submicron resolution has found a host of applications,such as 5G communications and highly sensitive detection.The tiny and complex features of these structures can enhance device performance during high-frequency operation.However,manufacturing pure copper microstructures remain challenging.In this paper,we present localized electrochemical deposition micro additive manufacturing(LECD-μAM).This method combines localized electrochemical deposition(LECD)and closed-loop control of atomic force servo technology,which can effectively print helical springs and hollow tubes.We further demonstrate an overall model based on pulsed microfluidics from a hollow cantilever LECD process and closed-loop control of an atomic force servo.The printing state of the micro-helical springs can be assessed by simultaneously detecting the Z-axis displacement and the deflection of the atomic force probe cantilever.The results showed that it took 361 s to print a helical spring with a wire length of 320.11μm at a deposition rate of 0.887μm s^(-1),which can be changed on the fly by simply tuning the extrusion pressure and the applied voltage.Moreover,the in situ nanoindenter was used to measure the compressive mechanical properties of the helical spring.The shear modulus of the helical spring material was about 60.8 GPa,much higher than that of bulk copper(~44.2 GPa).Additionally,the microscopic morphology and chemical composition of the spring were characterized.These results delineate a new way of fabricating terahertz transmitter components and micro-helical antennas with LECD-μAM technology.展开更多
An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,an...An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,and film-forming mechanism of dodecyltrime-thoxysilane(DTMS)/tetraethoxysilane(TEOS)silane films were comprehensively analyzed using Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).Based on the test results,it can be determined that this film has a superhydrophobic property with a hydrophobicity angle of 152°.This special property can be attributed to the long alkyl chains in the DTMS molecule,the rough morphology,and the low surface energy of the DTMS/TEOS silane film.The surface of sintered NdFeB is coated with a layered three-dimensional network silane film that forms through the condensation of silanol substances.This film provides excellent corrosion resistance to the sintered NdFeB substrate,reducing its corrosion current density to 2.02×10~(-6)A/cm~2.Moreover,the impact of film on the magnetic characteristics of sintered NdFeB was assessed and found to be minimal.展开更多
基金supported by the National Basic Research Program of China (No.2007CB210305)the National Natural Science Foundation of China (Grant No.50674031).
文摘Electrochemical deposition and nucleation of aluminum on tungsten electrode from AlCl3-NaCl melts were studied by cyclic voltammetry, chronopotentiometry and chronoamperometry. Cyclic voltammetry and chronopotentiometry analyses showed that Al (Ⅲ) was reduced at 200℃ in two consecutive steps in an electrolyte of molten AlCl3-NaCl system with a composition 52:48 molar ratio. The current-time characteristics of nucleation aluminum on tungsten showed a strong dependence on overpotentials. Chronoamperometry showed that the deposition process of aluminum on tungsten was controlled by an instantaneous nucleation with a hemispherical diffusion-controlled growth mechanism. The results could lead to a better understanding of the AlCl3-NaCl melt system that has technological importance in electrodeposition of metals as well as in rechargeable batteries.
基金Acknowledgments This work was supported by the National Natural Science Foundation of China (NSFC) Project under Grant Nos. 51075228, 50675112 and 50721004.
文摘The superhydrophobicity of plant leaves is a benefit of the hierarchical structures of their surfaces. These structures have been imitated in the creation of synthetic surfaces. In this paper, a novel process for fabrication of biomimetic hierarchical structures by electrochemical deposition of a metal on porous alumina is described. An aluminum specimen was anodically oxidized to obtain a porous alumina template, which was used as an electrode to fabricate a surface with micro structures through electrochemical deposition of a metal such as nickel and copper after the enlargement of pores. Astonishingly, a hier- archical structure with nanometer pillars and micrometer clusters was synthesized in the pores of the template. The nanometer pillars were determined by the nanometer pores. The lbrmation of micrometer clusters was related to the thin walls of the pores and the crystallization of the metal on a flat surface. From the as-prepared biomimetic surfaces, lotus-leaf-like superhydrophobic surfaces with nickel and copper deposition were achieved.
基金funded by Nippon Sheet Glass Corp.the Hitachi Foundation+4 种基金the Malaysia-Japan International Institute of TechnologyUniversiti Teknologi Malaysiathe Malaysian Ministry of ScienceTechnology and Innovationthe Malaysian Ministry of Education through various research Grants
文摘The effects of the supporting reagents hexamethylenetetramine(HMTA)and potassium chloride(KCl)mixed in zinc nitrate hexahydrate(Zn(NO3)2 6H2O)on the morphological,structural,and optical properties of the resulting Zn O nanostructures electrodeposited on graphene/glass substrates were investigated.The supporting reagent HMTA does not increase the density of nanorods,but it does remarkably improve the smoothness of the top edge surfaces and the hexagonal shape of the nanorods even at a low temperature of 75°C.Hydroxyl(OH-)ions from the HMTA suppress the sidewall growth of non-polar planes and promote the growth of Zn O on the polar plane to produce vertically aligned nanorods along the c axis.By contrast,the highly electronegative chlorine(Cl-)ions from the supporting reagent KCl suppress the growth of Zn O on the polar plane and promote the growth on non-polar planes to produce vertical stacking nanowall structures.HMTA was found to be able to significantly improve the crystallinity of the grown Zn O structures,as indicated by the observation of much lower FWHM values and a higher intensity ratio of the emission in the UV region to the emission in the visible region.Equimolar mixtures of Zn(NO3)2 6H2O and the supporting reagents HMTA and KCl seem to provide the optimum ratio of concentrations for the growth of high-density,uniform Zn O nanostructures.The corresponding transmittances for such molar ranges are approximately 55–58%(HMTA)and 63–70%(KCl),which are acceptable for solar cell and optoelectronic devices.
基金supported by the National Natural Science Foundation of China(No.50731006)
文摘A new basic electrolyte with two cationic plating additives, polydiaminourea and polyaminosulfone, was investigated for the electrochemical deposition of the bismuth telluride film on a nickel-plated copper foil. Tellurium starts to deposit at a higher potential (-0.35 V) than bismuth (-0.5 V) in this electrolyte. The tellurium-to-bismuth ratio increases while the deposition potential declines from -1 to -1.25 V, indicating a kinetically quicker bismuth deposition at higher potentials. The as-deposited film features good adhesion to the substrate and smooth morphology, and has a nearly amorphous crystal structure disclosed by X-ray diffraction patterns.
基金Supported by the National Natural Science Foundation of China (No.59671058)
文摘The Ni-W gradient deposit with nano-structure was prepared by an electrochemical deposition method.X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDXA) indicate that the crystallite size of the deposit decreases from 10.3nm to 1.5nm and the crystal grating aberrance increases with the increase of W content in the growing direction of the deposit. The structure of deposit changes from crystalline to amorphous stepwise with associated increase of crystal grating aberrance, and presents gradient distribution. These show that the deposit isgradient with nano-structure.
文摘ZnO nanoparticles-embedded hydrogenated diamond-like carbon (ZnO-DLC) films have been prepared by electro- chemical deposition in ambient conditions. The morphology, composition, and microstructure of the films have been investigated. The results show that the resultant films are hydrogenated diamond-like carbon films embedded with ZnO nanoparticles in wurtzite structure, and the content and size of the ZnO nanoparticles increase with increasing deposition voltage, which are confirmed by X-ray photoelectron spectroscopy (XPS), Raman, and transmission electron microscope (TEM). Furthermore, a possible mechanism used to describe the growth process of ZnO-DLC films by electrochemical deposition is also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61704011,61674021,11674038,61574022,and 61904017)the Innovation Foundation of Changchun University of Science and Technology(Grant No.XQNJJ-2018-18).
文摘Self-powered photodetectors based on nanomaterials have attracted lots of attention for several years due to their various advantages.In this paper,we report a high performance Cu2O/ZnO self-powered photodetector fabricated by using electrochemical deposition.ZnO nanowires arrays grown on indium-tin-oxide glass are immersed in Cu2O film to construct type-Ⅱband structure.The Cu2O/ZnO photodetector exhibits a responsivity of 0.288 mA/W at 596 nm without bias.Compared with Cu2O photoconductive detector,the responsivity of the Cu2O/ZnO self-powered photodetector is enhanced by about two times at 2 V bias.It is attributed to the high power conversion efficiency and the efficient separation of the photogenerated electron-hole pairs,which are provided by the heterojunction.The outstanding comprehensive performances make the Cu2O film/ZnO nanowires self-powered photodetector have great potential applications.
文摘Europium bisphthalocyanine (EuPc2) nanowires were prepared by electrochemical deposition method. Scanning electron microscopy (SEM) images show the evolution of the morphologies of nanowires obtained under different deposition time (Td). The optical properties of europium bisphthalocyanine films were studied by UV-Vis absorption spectra. The morphology of EuPc2 nanowires could be controlled by changing deposition conditions, which provides a useful method to make organic nanowires.
文摘Several TAAFS (tetraalkylammonium hexafluorosilicates) with different cations were synthesized. Their thermal properties were studied showing that obtained complexes are stable enough to be suitable for electrochemical deposition of silicon coatings under temperatures at least up to 200 ℃.
基金Supported by the National Natural Science Foundation of China(51275180)the Fundamental Research Funds for the Central Universities(2013ZM0003)the Doctorate Dissertation Funds of Guangdong Province(sybzzxm 201213)
文摘Superhydrophilic surfaces were fabricated on copper substrates by an electrochemical deposition and sintering process. Superhydrophobic surfaces were prepared by constructing micro/nano-structure on copper substrates through an electrochemical deposition method. Conversion from superhydrophobic to superhydrophilic was obtained via a suitable sintering process. After reduction sintering, the contact angle of the superhydrophilic surfaces changed from 155° to 0°. The scanning electron microscope (SEM) images show that the morphology of superhydrophobic and superhydrophilic surfaces looks like corals and cells respectively. The chemical composition and crystal structure of these surfaces were examined using energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). The results show that the main components on superhydrophobic surfaces are Cu, Cu2O and CuO, while the superhydrophilic surfaces are composed of Cu merely. The crystal structure is more inerratic and the grain size becomes bigger after the sintering. The interracial strength of the superhydrophilic surfaces was investigated, showing that the interfacial strength between superhydrophilic layer and copper substrate is considerably high.
基金supported by Universiti Malaya,Malaysia(GPF003A-2018).Part of this work is performed in Micro/Nanomachining Research Education Center(MNC)of Tohoku University,Japan under the Japan Student Services Organization(JASSO)scholarship.Nuur Syahidah Sabran would like to thank the Ministry of Education of Malaysia for the scholarship(MyPhD)awarded.
文摘Doped/filled skutterudites are much studied materials due to their excellent thermoelectric performance.However,their synthesis and preparation is complicated.This work synthesized indium(In)doped cobalt triantimonide(CoSb_(3))skutterudite thick films using a facile electrochemical deposition technique through chronoamperometric steps for 2 h.The nominal composition of In element is found in the range of 0.55e0.23 for a stoichiometric condition of In doped CoSb_(3)thick films.The early crystal growth of In doped films shows instantaneous nucleation and is controlled by the charge transfer process with diffusion coefficient,D of 10^(-5)cm^(2)/s.The incorporation of In into the interstitial sites of CoSb_(3)cages is evident from the lattice constant(a)expansion as observed in XRD.The optimum Seeback coefficient(S)of the 0.5 mmol In doped CoSb_(3)thick film is89.84 mV/K at 282 K,due to an increase in the carrier concentration(n~10^(20)cm^(-3)).The negative S is due to the electron donor behaviour of the In.Meanwhile,high electrical conductivity,s value(14.26 kS/m)contributes to a power factor(S2s)increment of 115.11 mW/(m$K2).The result shows a promising thermoelectric property of doped skutterudite synthesized by electrochemical deposition technique.
基金supported by the Ministry of Education of China (IRT1148)the National Natural Science Foundation of China (51772157 and 21173116)+3 种基金Synergistic Innovation Center for Organic Electronics and Information Displays,Jiangsu Province "Six Talent Peak" (2015-JY-015)Jiangsu Provincial Natural Science Foundation (BK20141424)the Program of Nanjing University of Posts and Telecommunications (NY214088)the Open Research Fund of State Key Laboratory of Bioelectronics of Southeast University (12015010)
文摘Flexible and micro-sized energy conversion/storage components are extremely demanding in portable and multifunctional electronic devices, especially those small,flexible, roll-up and even wearable ones. Here in this paper, a two-step electrochemical deposition method has been developed to coat Ni fibers with reduced graphene oxide and MnO2 subsequently, giving rise to Ni@reduced-graphene-oxide@MnO2 sheath-core flexible electrode with a high areal specific capacitance of 119.4 mF cm^-2 at a current density of 0.5 mA cm^-2 in 1 mol L^-1 Na2SO4 electrolyte. Using polyvinyl alcohol(PVA)-LiCl as a solid state electrolyte, two Ni@reduced-grapheneoxide@Mn02 flexible electrodes were assembled into a freestanding, lightweight, symmetrical fiber-shaped micro-supercapacitor device with a maximum areal capacitance of26.9 mF cm^-2. A high power density of 0.1 W cm^-3 could be obtained when the energy density was as high as0.27 mW h cm^-3. Moreover, the resulting micro-supercapacitor device also demonstrated good flexibility and high cyclic stability. The present work provides a simple, facile and low-cost method for the fabrication of flexible, lightweight and wearable energy conversion/storage micro-devices with a high-performance.
基金supported by the National Key Basic Research Program of China (No. 2012CB619100)the National Natural Science Foundation of China (No. 51541201, 51372087)+2 种基金the Science and Technology Planning Project of Guangdong Province, China (No. 2014A010105048)the Natural Science Foundation of Guangdong Province, China (No. 2015A030313493)the State Key Laboratory for Mechanical Behavior of Materials, China (No. 20141607)
文摘The objective of this study was to determine the role of functional groups of silane coupling on bioactive titanium (Ti) surface by electrochemical deposition, and calcium phosphate (CAP) coating, as well as bone cell adhesion and proliferation. Methyl group (-CH3), amino group (-NH2), and epoxy group (-glyph name--C(O)C) were introduced onto the bioactive Ti surface using self-assembled monolayers (SAMs) with different silane coupling agents as molecular bridges. The effect of the surface functional groups on the growth features of the CaP crystals was analyzed (including chemical compositions, element content, minerals morphology and crystal structure etc.). CH3-terminated SAMs showed a hydrophobic surface and others were hydrophilic by contact angle measurement; NH2-terminated SAMs showed a positive charge and others were negatively charged using zeta-potential measurement. Scanning electron microscopy results confirmed that flower-like structure coatings consisting of various pinpoint-like crystals were formatted by different functional groups of silane coupling, and the CaP coatings were multicrystalline consisting of hydroxyapatite (HA) and precursors. CaP coating of CH3-terminated SAMs exhibited more excellent crystallization property as compared to coatings of --NH2 and -C(O)C groups. In vitro MC3T3- El cells adhesion and proliferation were performed. The results showed that CaP coatings on silane coupling functionalized surfaces supported cell adhesion and proliferation. Thus, these functional groups of silane coupling on Ti can form homogeneous and oriented nano-CaP coatings and provide a more biocompatible surface for bone regeneration and biomedical applications.
基金financially supported by the National Natural Science Foundation of China (No. 61774169)the Natural Science Foundation of Hunan Province (No. 2022JJ30757)the Guangdong Science and Technology Planning Project (No.2018B030323010)。
文摘Thermal stability of perovskite materials is an issue impairing the long-term operation of inverted perovskite solar cells(PSCs). Herein, the thermal attenuation mechanism of the MAPb I3films that deposited on two different hole transport layers(HTL), poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS) and poly(3,4-ethylenedioxythiophene)(PEDOT), is comprehensively studied by applying a heat treatment at 85℃. The thermal stress causes the mutual ions migration of I, Pb and Ag through the device, which leads to the thermal decomposition of perovskite to form Pb I2. Interestingly, we find that I ions tend to migrate more towards electron transport layer(ETL) during heating, which is different with the observation of I ions migration towards HTL when bias pressure is applied. Moreover, the use of electrochemical deposited PEDOT as HTL significantly decreases the defect density of MAPb I3films as compared to PEDOT:PSS supported one. The electrochemical deposition PEDOT has good carrier mobility and low acidity, which avoids the drawbacks of aqueous PEDOT:PSS. Accordingly, the inverted PSCs based on PEDOT show superior durability than that with PEDOT:PSS. Our results reveal detailed degradation routes of a new kind of inverted PSCs which can contribute to the understanding of the failure of thermal-aged inverted PSCs.
基金the financial support of the National Natural Science Foundation of China(Nos.41361088 and41867063)。
文摘The development of effective uranium-removal techniques is of great significance to the environment and human health.In this work,a double potential step technique(DPST)was applied to remove U(VI)from uranium-containing wastewater using a carbon felt electrode modified by graphene oxide/phytic acid composite(GO-PA@CF).The application of DPST can inhibit water splitting and prevent GO-PA from adsorbing other interfering ions in wastewater.The GO-PA composite can effectively accelerate the electrochemical reduction rate of U(VI),which significantly improved the electrochemical deposition rate of uranium oxide.As a result,the maximum removal efficiency and maximum removal capacity of GOPA@CF electrode reached 98.7%and 1149.3 mg/g,respectively.The removal efficiency remained 97.2%after five cycles of reuse.Moreover,the removal efficiency of GO-PA@CF electrode can reach more than 70%in simulated wastewater.
文摘ZnO nanocrystals were prepared by a direct current electrochemical deposition process under 3.0V working voltage and 30A/m^2 current density using zinc sulfate as raw materials.The nanocrystals were characterized by X-ray diffraction (XRD)and transmission electron microscopy(TEM).The results indicated that the nanocrystals are hexagonal wurtzite ZnO with particle size range of 25nm~40nm without any treating.Gas sensing properties of the sensors were tested by mixing a gas in air at static state;the tested results showed that the sensors based on nanocrystalline ZnO had satisfied gas sensing properties to H_2S gas at rather low temperature.
基金Funded by the National Natural Science Foundation of China(Nos.21671086 and 21761013)the Ganzhou Key Research&Development Projects(Ganshikefa[2019]60)。
文摘To improve corrosion inhibition performance of copper foil with a novel two-step electrochemical modification processes,the surface of 35μm copper foils was coated with graphene oxide(GO)via electrochemical method at first step,then was further coated with 3-aminopropyltrimethoxysilane(APTS)at the second step.For the first step the copper foil acted as anode,and as cathode for the second one(we labeled it as E-GO).Optimum coating parameters for the preparation of E-GO coating are 5 V and 1 min with ratio of APTS/deionized water(DI)1.5/98.5(v/v).The physicochemical properties of modified coating were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM)and hydrophilicity test.Electrochemical behavior of different samples were also investigated.The experimental results indicate that anti-corrosion performance is significantly improved with two-step modified coating.And E-GO coating shows more positive corrosion potential and the highest corrosion resistance rate than others according to the Tafel curve.It is also found that surface hydrophobicity of E-GO coating is significantly improved.
基金the National Natural Science Foundation of China(No.20676089)the Scholar Council Foundation of Shanxi Province,China(No.2004-24).
文摘The ion selectivity of electrodeposited nickel hexacyanoferrate (NiHCF) thin films was investigated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). NiHCF thin films were prepared by cathodic deposition on Pt and Al substrates. EIS and CV curves were determined in 1 mol/L (KNO3+C5NO3) and 1 mol/L (NaNO3+CsNO3) mixture solutions, which were sensitive to the concentration of Cs^+ in the electrolytes. Experimental results show that all Nyquist impedance plots show depressed semicircles in the high-frequency range changing over into straight lines at lower frequencies. With increasing amounts of Cs^+, the redox potentials in CV curves shift toward more positive values and the redox peaks broaden; the semicircle radius in corresponding EIS curves and the charge transfer resistance also increase. EIS combining CV is able to provide valuable insights into the ion selectivity of NiHCF thin films. 2008 University of Science and Technology Beijing. All rights reserved.
基金supported by the National Natural Science Foundation of China under Grant U19A20103the Fund for Jilin Province Scientific and Technological Development Program under No.Z20190101005JH。
文摘The fabrication of pure copper microstructures with submicron resolution has found a host of applications,such as 5G communications and highly sensitive detection.The tiny and complex features of these structures can enhance device performance during high-frequency operation.However,manufacturing pure copper microstructures remain challenging.In this paper,we present localized electrochemical deposition micro additive manufacturing(LECD-μAM).This method combines localized electrochemical deposition(LECD)and closed-loop control of atomic force servo technology,which can effectively print helical springs and hollow tubes.We further demonstrate an overall model based on pulsed microfluidics from a hollow cantilever LECD process and closed-loop control of an atomic force servo.The printing state of the micro-helical springs can be assessed by simultaneously detecting the Z-axis displacement and the deflection of the atomic force probe cantilever.The results showed that it took 361 s to print a helical spring with a wire length of 320.11μm at a deposition rate of 0.887μm s^(-1),which can be changed on the fly by simply tuning the extrusion pressure and the applied voltage.Moreover,the in situ nanoindenter was used to measure the compressive mechanical properties of the helical spring.The shear modulus of the helical spring material was about 60.8 GPa,much higher than that of bulk copper(~44.2 GPa).Additionally,the microscopic morphology and chemical composition of the spring were characterized.These results delineate a new way of fabricating terahertz transmitter components and micro-helical antennas with LECD-μAM technology.
基金financial support from the Public Welfare Projects of Zhejiang Province,China(No.LGG22E010002)the National Natural Science Foundation of China(Nos.52001300,52171083)。
文摘An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,and film-forming mechanism of dodecyltrime-thoxysilane(DTMS)/tetraethoxysilane(TEOS)silane films were comprehensively analyzed using Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).Based on the test results,it can be determined that this film has a superhydrophobic property with a hydrophobicity angle of 152°.This special property can be attributed to the long alkyl chains in the DTMS molecule,the rough morphology,and the low surface energy of the DTMS/TEOS silane film.The surface of sintered NdFeB is coated with a layered three-dimensional network silane film that forms through the condensation of silanol substances.This film provides excellent corrosion resistance to the sintered NdFeB substrate,reducing its corrosion current density to 2.02×10~(-6)A/cm~2.Moreover,the impact of film on the magnetic characteristics of sintered NdFeB was assessed and found to be minimal.