γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prep...In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The effects of adding Si on the structure and electrochemical hydrogen storage characteristics of the alloys were investigated systematically. The results indicate that the as-cast and annealed alloys hold multiple structures, involving two major phases of (La, Mg)2Ni7 with a Ce2Ni7-type hexagonal structure and LaNi5 with a CaCu5-type hexagonal structure as well as one residual phase LaNi3. The addition of Si results in a decrease in (La, Mg)2Ni7 phase and an increase in LaNi5 phase without changing the phase structure of the alloys. What is more, it brings on an obvious effect on electrochemical hydrogen storage characteristics of the alloys. The discharge capacities of the as-cast and annealed alloys decline with the increase of Si content, but their cycle stabilities clearly grow under the same condition. Furthermore, the measurements of the high rate discharge ability, the limiting current density, hydrogen diffusion coefficient as well as electrochemical impedance spectra all indicate that the electrochemical kinetic properties of the electrode alloys first increase and then decrease with the rising of Si content.展开更多
The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, iono...The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, ionomer, and Pt nanoparticles, all immersed together and sprayed with a micron-level thickness of CLs. They have a performance trade-off where increasing the Pt loading leads to higher performance of abundant triple-phase boundary areas but increases the electrode cost. Major challenges must be overcome before realizing its wide commercialization. Literature research revealed that it is impossible to achieve performance and durability targets with only high-performance catalysts, so the controllable design of CLs architecture in MEAs for PEMFCs must now be the top priority to meet industry goals. From this perspective, a 3D ordered electrode circumvents this issue with a support-free architecture and ultrathin thickness while reducing noble metal Pt loadings. Herein, we discuss the motivation in-depth and summarize the necessary CLs structural features for designing ultralow Pt loading electrodes. Critical issues that remain in progress for 3D ordered CLs must be studied and characterized. Furthermore, approaches for 3D ordered CLs architecture electrode development, involving material design, structure optimization, preparation technology, and characterization techniques, are summarized and are expected to be next-generation CLs for PEMFCs. Finally, the review concludes with perspectives on possible research directions of CL architecture to address the significant challenges in the future.展开更多
Optimization of composition and microstructure is important to enhance performance of solid oxide fuel cells (SOFC) and lithium-ion batteries (LIB). For this, the porous electrode structures of both SOFC and LIB a...Optimization of composition and microstructure is important to enhance performance of solid oxide fuel cells (SOFC) and lithium-ion batteries (LIB). For this, the porous electrode structures of both SOFC and LIB are modeled as a binary mixture of electronic and ionic conducting particles to estimate effective transport properties. Particle packings of 10000 spherical, binary sized and randomly positioned particles are created numerically and densified considering the different manufacturing processes in SOFC and LIB: the sintering of SOFC electrodes is approximated geometrically, whereas the calendering process and volume change due to intercalation in LIB are modeled physically by a discrete el- ement approach. A combination of a tracking algorithm and a resistor network approach is developed to predict the con- nectivity and effective conductivity for the various densified structures. For SOFC, a systematic study of the influence of morphology on connectivity and conductivity is performed on a large number of assemblies with different compositions and particle size ratios between 1 and 10. In comparison to percolation theory, an enlarged percolation area is found, es- pecially for large size ratios. It is shown that in contrast to former studies the percolation threshold correlates to varying coordination numbers. The effective conductivity shows not only an increase with volume fraction as expected but also with size ratio. For LIB, a general increase of conductivity during the intercalation process was observed in correlation with increasing contact forces. The positive influence of cal- endering on the percolation threshold and the effective conductivity of carbon black is shown. The anisotropy caused by the calendering process does not influence the carbon black phase.展开更多
In this study, electrodeposition and thermal decomposition were alternatively used for the fabrication of a series of novel multilayer-structured SnO_2–Sb–Ce/Ti(SSCT) electrodes, and their physiochemical and electro...In this study, electrodeposition and thermal decomposition were alternatively used for the fabrication of a series of novel multilayer-structured SnO_2–Sb–Ce/Ti(SSCT) electrodes, and their physiochemical and electrochemical properties were investigated for electrochemical oxidation of tetracycline(TC) in aqueous medium.Experimentally, after the SnO_2–Sb–Ce(SSC) composite was electrodeposited for 120 s on the titanium substrate in aqueous solution, the outer thermal coatings composed of SSC were synthesized by a hydrothermal method.Both influences of electrodeposition time(T_(ed)) and thermal decomposition time(Ttd) were investigated to obtain the optimum preparation. It was found that when increasing T_(ed)to a certain extent a longer lifetime of electrode can be achieved, which was attributed to a more solid interlayer structure. A notable SSCTT_(ed),Ttdelectrode,i.e., SSCT3,10, which was prepared through three times of 120 s' electrodeposition(T_(ed)= 3) and ten times of thermal decomposition(Ttd= 10) obtained the highest oxygen evolution potential 3.141 V vs. SCE. In this selected electrode, when 10 mg·L^(-1) initial TC concentration was added to this wastewater, the highest color removal efficiency and mineralization rate of TC were 72.4% and 41.6%, respectively, with an applied electricity density of 20 m A·cm^(-2) and treatment time of 1 h. These results presented here demonstrate that the combined application of electrodeposition and thermal decomposition is effective in realization of enhanced electrocatalytic oxidation activity.展开更多
For the purpose of improving the electrochemical cycle stability of the La-Mg-Ni based A2BT-type electrode alloys, both reducing Mg content and substituting La with Pr were adopted. The Lao.8-xPrxMg0.2Ni3.15Co0.2A10.1...For the purpose of improving the electrochemical cycle stability of the La-Mg-Ni based A2BT-type electrode alloys, both reducing Mg content and substituting La with Pr were adopted. The Lao.8-xPrxMg0.2Ni3.15Co0.2A10.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were fabricated by casting and annealing. The investigation on the structures and electrochemical performances of the alloys was performed. The obtained results reveal that the as-cast and annealed alloys comprise two major phases, (La, Mg)2Ni7 phase with the hexagonal Ce2NiT-type structure and LaNi5 phase with the hexagonal CaCus-type structure, as well as a little residual LaNi3 phase. It is also found that the addition of Pr element observably affects the electrochemical hydrogen storage characteristics of the alloys, just as the discharge capacity and high rate discharge ability (HRD) first rise then fall with the growing of Pr content, and among all the alloys, the as-cast and annealed (x=0.3) alloys generate the largest discharge capacities of 360.8 and 386.5 mA.h/g, respectively. Additionally, the electrochemical cycle stability of all the alloys markedly grows with the increase of Pr content. The capacity retaining rate (S100) at the 100th charging and discharging cycle is enhanced from 64.98% to 77.55% for the as-cast alloy, and from 76.60% to 95.72% for the as-annealed alloy by rising Pr content from 0 to 0.4. Furthermore, the substitution of Pr for La results in first increase and then decrease in the hydrogen diffusion coefficient (D), the limiting current density (IL) as well as the electrochemical impedance.展开更多
Efflcient collection of water from fog can effectively alleviate the problem of water shortages in foggy but water-scarce areas,such as deserts,islands and so on.Unlike inefflcient fog meshes,corona discharge can char...Efflcient collection of water from fog can effectively alleviate the problem of water shortages in foggy but water-scarce areas,such as deserts,islands and so on.Unlike inefflcient fog meshes,corona discharge can charge water droplets and further enhance the water-collecting effect.This study proposes a novel multi-electrode collecting structure that can achieve efflcient and direction-independent water collection from fog.The multi-electrode structure consists of three parts:a charging electrode,an intercepting electrode and a ground electrode.Four types of watercollecting structures are compared experimentally,and the collection rates from a traditional fog mesh,a wire-mesh electrode with fog coming from a high-voltage electrode,a wire-mesh electrode with fog coming from a ground electrode and a multi-electrode structure are 2–3 g h^(-1),100–120 g h^(-1),60–80 g h^(-1)and 200–220 g h^(-1),respectively.The collection rate of the multielectrode structure is 100–150 times that of a traditional fog mesh and 2–4 times that of a wiremesh electrode.These results demonstrate the superiority of the multi-electrode structure in fog collection.In addition,the motion equation of charged droplets in an electric fleld is also derived,and the optimization strategy of electrode spacing is also discussed.This structure can be applied not only to fog collection,but also to air puriflcation,factory waste gas treatment and other flelds.展开更多
The interfacial performance of implanted neural electrodes is crucial for stimulation safety and the recording quality of neuronal activity.This paper proposes a novel surface architecture and optimization strategy fo...The interfacial performance of implanted neural electrodes is crucial for stimulation safety and the recording quality of neuronal activity.This paper proposes a novel surface architecture and optimization strategy for the platinum–iridium(Pt–Ir)electrode to optimize electrochemical performance and wettability.A series of surface micro/nano structures were fabricated on Pt–Ir electrodes with different combinations of four adjustable laser-processing parameters.Subsequently,the electrodes were characterized by scanning electron microscopy,energy-dispersive X-ray spectroscopy,cyclic voltammetry,electrochemical impedance spectroscopy,and wetting behavior.The results show that electrode performance strongly depends on the surface morphology.Increasing scanning overlap along with moderate pulse energy and the right number of pulses leads to enriched surface micro/nano structures and improved electrode performance.It raises the maximum charge storage capacity to 128.2 mC/cm^(2) and the interface capacitance of electrodes to 3.0×10^(4)μF/cm^(2) for the geometric area,compared with 4.6 mC/cm^(2) and 443.1μF/cm2,respectively,for the smooth Pt–Ir electrode.The corresponding optimal results for the optically measured area are 111.8 mC/cm^(2) and 2.6×10^(4)μF/cm^(2),which indicate the contribution of fner structures to the ablation profle.The hierarchical structures formed by the femtosecond laser dramatically enhanced the wettability of the electrode interface,giving it superwicking properties.A wicking speed of approximately 80 mm/s was reached.Our optimization strategy,leading to superior performance of the superwicking Pt–Ir interface,is promising for use in new neural electrodes.展开更多
The rapid development and widespread application of lithium-ion batteries(LIBs) have increased demand for high-safety and high-performance LIBs. Accordingly, various additives have been used in commercial liquid elect...The rapid development and widespread application of lithium-ion batteries(LIBs) have increased demand for high-safety and high-performance LIBs. Accordingly, various additives have been used in commercial liquid electrolytes to severally adjust the solvation structure of lithium ions, control the components of solid electrolyte interphase, or reduce flammability. While it is highly desirable to develop low-cost multifunctional electrolyte additives integrally that address both safety and performance on LIBs, significant challenges remain. Herein, a novel phosphorus-containing organic small molecule, bis(2-methoxyethyl) methylphosphonate(BMOP), was rationally designed to serve as a fluorine-free and multifunctional additive in commercial electrolytes. This novel electrolyte additive is low-toxicity,high-efficiency, low-cost, and electrode-compatible, which shows the significant improvement to both electrochemical performance and fire safety for LIBs through regulating the electrolyte solvation structure, constructing the stable electrode-electrolyte interphase, and suppressing the electrolyte combustion. This work provides a new avenue for developing safer and high-performance LIBs.展开更多
Designing low-cost,easy-fabricated,highly stable and active electrocatalysts for oxygen evolution reaction(OER) is crucial for electrochemical(EC) and solar-driven photoelectrochemical(PEC) water splitting.By using a ...Designing low-cost,easy-fabricated,highly stable and active electrocatalysts for oxygen evolution reaction(OER) is crucial for electrochemical(EC) and solar-driven photoelectrochemical(PEC) water splitting.By using a facile heating-electrodeposition method,here we fabricated a porous but crystalline Fe-doped Ni3 S2.A thin porous surface NiFe hydroxide layer(~10 nm) is then formed through OER-running.By virtue of the core Fe-doped Ni3 S2 with good conductivity and the shell NiFe hydroxide surface with good electrocatalytic activity,the core-shell nanostructure on Ni foam exhibits excellent OER activity in 1 M NaOH,needing only 195 and 230 mV to deliver 10 and 100 mA/cm^(2),respectively,much more superior to those of 216 and 259 mV for the sample deposited under normal temperature.The enhanced photo-response of the sulfide@hydroxide core-shell structure was also demonstrated,due to the efficient transfer of photo-generated carriers on the core/shell interface.More interestingly,it shows a good compatibility with Si based photoanode,which exhibits an excellent PEC performance with an onset potential of 0.86 V vs.reversible hydrogen electrode,an applied bias photon-to-current efficiency of 5.5% and a durability for over 120 h under AM 1.5 G 1 sun illumination,outperforming the state-of-the-art Si based photoanodes.展开更多
The La-Mg-Ni system PuNi3-type La0.5Ce0.2Mg0.3Co0.4Ni2.6-xMnx(x=0,0.1,0.2,0.3,0.4) hydrogen storage alloys were prepared by casting and rapid quenching. The effects of the rapid quenching on the structure and electroc...The La-Mg-Ni system PuNi3-type La0.5Ce0.2Mg0.3Co0.4Ni2.6-xMnx(x=0,0.1,0.2,0.3,0.4) hydrogen storage alloys were prepared by casting and rapid quenching. The effects of the rapid quenching on the structure and electrochemical characteristics of the alloys were studied. The results obtained by XRD,SEM and TEM indicate that the as-cast and quenched alloys mainly consist of two major phases,(La,Mg)Ni3 and LaNi5,as well as a residual phase LaNi. The rapid quenching does not exert an obvious influence on the phase composition of the alloys,but it leads to an increase of the LaNi5 phase and a decrease of the(La,Mg)Ni3 phase. The as-quenched alloys have a nano-crystalline structure,and the grain sizes of the alloys are in the range of 20-30 nm. The results by the electrochemical measurements indicate that both the discharge capacity and the high rate discharge(HRD) ability of the alloy first increase and then decrease with the variety of quenching rate and obtain the maximum values at the special quenching rate which is changeable with the variety of Mn content. The rapid quenching significantly improves the cycle stabilities of the alloys,but it slightly impairs the activation capabilities of the alloys.展开更多
We present the design, fabrication, and characterization of two new types of terahertz photoconductive emitters. One has an asymmetric four-contact electrode structure and the other has an arc-shaped electrode structu...We present the design, fabrication, and characterization of two new types of terahertz photoconductive emitters. One has an asymmetric four-contact electrode structure and the other has an arc-shaped electrode structure, which are all modified from a traditional strip line antenna. Numerical simulations and real experiments confirm the good performance of the proposed antennas. An amplitude increase of about 40% is experimentally observed for the terahertz signals generated from the new structures. The special electrode structure and its induced local bias field enhancement are responsible for this radiation efficiency improvement. Our work demonstrates the feasibility of developing highly efficient terahertz photoconductive emitters by optimizing the electrode structure.展开更多
Using lateral phase change random access memory(PCRAM)for demonstration,we report a self-aligned process to fabricate a metal electrode-quantum dot(QD)/nanowire(NW)-metal electrode structure.Due to the good confinemen...Using lateral phase change random access memory(PCRAM)for demonstration,we report a self-aligned process to fabricate a metal electrode-quantum dot(QD)/nanowire(NW)-metal electrode structure.Due to the good confinement and coupling between the Ge_(2)Sb_(2)Te_(5)(GST)QD and the tungsten electrodes,the device shows a threshold current and voltage as small as 2.50μA and 1.08 V,respectively.Our process is highlighted with good controllability and repeatability with 100%yield,making it a promising fabrication process for nanoelectronics.展开更多
Epidermal electrophysiological monitoring has garnered significant attention for its potential in medical diagnosis and healthcare,particularly in continuous signal recording.However,simultaneously satisfying skin com...Epidermal electrophysiological monitoring has garnered significant attention for its potential in medical diagnosis and healthcare,particularly in continuous signal recording.However,simultaneously satisfying skin compliance,mechanical properties,environmental adaptation,and biocompatibility to avoid signal attenuation and motion artifacts is challenging,and accurate physiological feature extraction necessitates effective signal-processing algorithms.This review presents the latest advancements in smart electrodes for epidermal electrophysiological monitoring,focusing on materials,structures,and algorithms.First,smart materials incorporating self-adhesion,self-healing,and self-sensing functions offer promising solutions for long-term monitoring.Second,smart meso-structures,together with micro/nanostructures endowed the electrodes with self-adaption and multifunctionality.Third,intelligent algorithms give smart electrodes a“soul,”facilitating faster and more-accurate identification of required information via automatic processing of collected electrical signals.Finally,the existing challenges and future opportunities for developing smart electrodes are discussed.Recognized as a crucial direction for next-generation epidermal electrodes,intelligence holds the potential for extensive,effective,and transformative applications in the future.展开更多
Ni-Fe-Mo-Co alloy electrode was prepared in a citrate solution by electrodeposition, and then Mo and Fe were partially leached out from the electrode in 30% KOH solution. The unique surface micromorphology of a hive-l...Ni-Fe-Mo-Co alloy electrode was prepared in a citrate solution by electrodeposition, and then Mo and Fe were partially leached out from the electrode in 30% KOH solution. The unique surface micromorphology of a hive-like structure was obtained with an average pore size of about 50 nm. The electrode has a very large real surface area and a stable structure. The effects of sodium molybdate concentration on the composition, surface morphology, and structure of electrodes were analyzed by EDS, SEM and XRD. The polarization curves of the different electrodes show that the catalytic activity of electrodes is strongly correlated with the mole fraction of alloy elements (Ni, Fe, Mo, Co), and the addition of cobalt element to Ni-Fe-Mo alloy improves the catalytic activity. The Ni35.63Fe24.67Mo23.52Co16.18 electrode has the best activity for hydrogen evolution reaction(HER), with an over-potential of 66.2 mV, in 30% KOH at 80 ℃ and 200 mA/cm2. The alloy maintains its good catalytic activity for HER during continuous or intermittent electrolysis. Its electrochemical activity and catalytic stability are much higher than the other iron-group with Mo alloy electrodes.展开更多
The behavior of chloride adsorbed on Ag(100) electrode has been studied using chronoamperometric technique, and the structural transition of chloride layer has been confirmed.
In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- ti...In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- tive materials have the relative large effects on the properties of gadolinium ion selective electrodes.展开更多
High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillim...High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.展开更多
Conducting polymers(CPs),including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS),are promising coating materials for neural electrodes.However,the weak adhesion of CP coatings to substrates such a...Conducting polymers(CPs),including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS),are promising coating materials for neural electrodes.However,the weak adhesion of CP coatings to substrates such as platinum-iridium is a significant challenge that limits their practical application.To address this issue,we used femtosecond laser-prepared hierarchical structures on platinum-iridium(Pt-Ir)substrates to enhance the adhesion of PEDOT:PSS coatings.Next,we used cyclic voltammetry(CV)stress and accelerated aging tests to evaluate the stability of both drop cast and electrodeposited PEDOT:PSS coatings on Pt-Ir substrates,both with and without hierarchical structures.Our results showed that after 2000 CV cycles or five weeks of aging at 60℃,the morphology and electrochemical properties of the coatings on the Pt-Ir substrates with hierarchical structures remained relatively stable.In contrast,we found that smooth Pt-Ir substrate surfaces caused delamination of the PEDOT:PSS coating and exhibited both decreased charge storage capacity and increased impedance.Overall,enhancing the stability of PEDOT:PSS coatings used on common platinum-iridium neural electrodes offers great potential for improving their electrochemical performance and developing new functionalities.展开更多
Cardiovascular disease persists as the primary cause of human mortality,significantly impacting healthy life expectancy.The routine electrocardiogram(ECG)stands out as a pivotal noninvasive diagnostic tool for identif...Cardiovascular disease persists as the primary cause of human mortality,significantly impacting healthy life expectancy.The routine electrocardiogram(ECG)stands out as a pivotal noninvasive diagnostic tool for identifying arrhythmias.The evolving landscape of fabric electrodes,specifically designed for the prolonged monitoring of human ECG signals,is the focus of this research.Adhering to the preferred reporting items for systematic reviews and meta-analyses(PRISMA)statement and assimilating data from 81 pertinent studies sourced from reputable databases,the research conducts a comprehensive systematic review and meta-analysis on the materials,fabric structures and preparation methods of fabric electrodes in the existing literature.It provides a nuanced assessment of the advantages and disadvantages of diverse textile materials and structures,elucidating their impacts on the stability of biomonitoring signals.Furthermore,the study outlines current developmental constraints and future trajectories for fabric electrodes.These insights could serve as essential guidance for ECG monitoring system designers,aiding them in the selection of materials that optimize the measurement of biopotential signals.展开更多
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
基金Projects(50961009,51161015)supported by the National Natural Science Foundation of ChinaProject(2011AA03A408)supported by the High-tech Research and Development Program of ChinaProjects(2011ZD10,2010ZD05)supported by the Natural Science Foundation of Inner Mongolia,China
文摘In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The effects of adding Si on the structure and electrochemical hydrogen storage characteristics of the alloys were investigated systematically. The results indicate that the as-cast and annealed alloys hold multiple structures, involving two major phases of (La, Mg)2Ni7 with a Ce2Ni7-type hexagonal structure and LaNi5 with a CaCu5-type hexagonal structure as well as one residual phase LaNi3. The addition of Si results in a decrease in (La, Mg)2Ni7 phase and an increase in LaNi5 phase without changing the phase structure of the alloys. What is more, it brings on an obvious effect on electrochemical hydrogen storage characteristics of the alloys. The discharge capacities of the as-cast and annealed alloys decline with the increase of Si content, but their cycle stabilities clearly grow under the same condition. Furthermore, the measurements of the high rate discharge ability, the limiting current density, hydrogen diffusion coefficient as well as electrochemical impedance spectra all indicate that the electrochemical kinetic properties of the electrode alloys first increase and then decrease with the rising of Si content.
基金funded by the Natural Science Foundation of Shandong Province, China (ZR2023MB049)the China Postdoctoral Science Foundation (2020M670483)the Science Foundation of Weifang University (2023BS11)。
文摘The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, ionomer, and Pt nanoparticles, all immersed together and sprayed with a micron-level thickness of CLs. They have a performance trade-off where increasing the Pt loading leads to higher performance of abundant triple-phase boundary areas but increases the electrode cost. Major challenges must be overcome before realizing its wide commercialization. Literature research revealed that it is impossible to achieve performance and durability targets with only high-performance catalysts, so the controllable design of CLs architecture in MEAs for PEMFCs must now be the top priority to meet industry goals. From this perspective, a 3D ordered electrode circumvents this issue with a support-free architecture and ultrathin thickness while reducing noble metal Pt loadings. Herein, we discuss the motivation in-depth and summarize the necessary CLs structural features for designing ultralow Pt loading electrodes. Critical issues that remain in progress for 3D ordered CLs must be studied and characterized. Furthermore, approaches for 3D ordered CLs architecture electrode development, involving material design, structure optimization, preparation technology, and characterization techniques, are summarized and are expected to be next-generation CLs for PEMFCs. Finally, the review concludes with perspectives on possible research directions of CL architecture to address the significant challenges in the future.
基金supported by the Helmholtz Portfolio "elektrochemische Speicher",particularly the work related to lithium-ion batteriespartially supported as part of the HeteroFoam Center,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science, Basic Energy Sciences(DE-SC0001061)+1 种基金support from the Center for Scientific Computing at the CNSI and MRL:an NSF MRSEC(DMR-1121053) and NSF (CNS-0960316)Australian Research Council Grant DE130101639
文摘Optimization of composition and microstructure is important to enhance performance of solid oxide fuel cells (SOFC) and lithium-ion batteries (LIB). For this, the porous electrode structures of both SOFC and LIB are modeled as a binary mixture of electronic and ionic conducting particles to estimate effective transport properties. Particle packings of 10000 spherical, binary sized and randomly positioned particles are created numerically and densified considering the different manufacturing processes in SOFC and LIB: the sintering of SOFC electrodes is approximated geometrically, whereas the calendering process and volume change due to intercalation in LIB are modeled physically by a discrete el- ement approach. A combination of a tracking algorithm and a resistor network approach is developed to predict the con- nectivity and effective conductivity for the various densified structures. For SOFC, a systematic study of the influence of morphology on connectivity and conductivity is performed on a large number of assemblies with different compositions and particle size ratios between 1 and 10. In comparison to percolation theory, an enlarged percolation area is found, es- pecially for large size ratios. It is shown that in contrast to former studies the percolation threshold correlates to varying coordination numbers. The effective conductivity shows not only an increase with volume fraction as expected but also with size ratio. For LIB, a general increase of conductivity during the intercalation process was observed in correlation with increasing contact forces. The positive influence of cal- endering on the percolation threshold and the effective conductivity of carbon black is shown. The anisotropy caused by the calendering process does not influence the carbon black phase.
基金Supported by the National Natural Science Foundation of China(U1510120)the International Academic Cooperation and Exchange Program of Shanghai Science and Technology Committee(14520721900)
文摘In this study, electrodeposition and thermal decomposition were alternatively used for the fabrication of a series of novel multilayer-structured SnO_2–Sb–Ce/Ti(SSCT) electrodes, and their physiochemical and electrochemical properties were investigated for electrochemical oxidation of tetracycline(TC) in aqueous medium.Experimentally, after the SnO_2–Sb–Ce(SSC) composite was electrodeposited for 120 s on the titanium substrate in aqueous solution, the outer thermal coatings composed of SSC were synthesized by a hydrothermal method.Both influences of electrodeposition time(T_(ed)) and thermal decomposition time(Ttd) were investigated to obtain the optimum preparation. It was found that when increasing T_(ed)to a certain extent a longer lifetime of electrode can be achieved, which was attributed to a more solid interlayer structure. A notable SSCTT_(ed),Ttdelectrode,i.e., SSCT3,10, which was prepared through three times of 120 s' electrodeposition(T_(ed)= 3) and ten times of thermal decomposition(Ttd= 10) obtained the highest oxygen evolution potential 3.141 V vs. SCE. In this selected electrode, when 10 mg·L^(-1) initial TC concentration was added to this wastewater, the highest color removal efficiency and mineralization rate of TC were 72.4% and 41.6%, respectively, with an applied electricity density of 20 m A·cm^(-2) and treatment time of 1 h. These results presented here demonstrate that the combined application of electrodeposition and thermal decomposition is effective in realization of enhanced electrocatalytic oxidation activity.
基金Projects(51161015,50961009) supported by the National Natural Science Foundation of ChinaProject(2011AA03A408) supported by the National High Technology Research and Development Program of ChinaProjects(2011ZD10,2010ZD05) supported by the Natural Science Foundation of Inner Mongolia,China
文摘For the purpose of improving the electrochemical cycle stability of the La-Mg-Ni based A2BT-type electrode alloys, both reducing Mg content and substituting La with Pr were adopted. The Lao.8-xPrxMg0.2Ni3.15Co0.2A10.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were fabricated by casting and annealing. The investigation on the structures and electrochemical performances of the alloys was performed. The obtained results reveal that the as-cast and annealed alloys comprise two major phases, (La, Mg)2Ni7 phase with the hexagonal Ce2NiT-type structure and LaNi5 phase with the hexagonal CaCus-type structure, as well as a little residual LaNi3 phase. It is also found that the addition of Pr element observably affects the electrochemical hydrogen storage characteristics of the alloys, just as the discharge capacity and high rate discharge ability (HRD) first rise then fall with the growing of Pr content, and among all the alloys, the as-cast and annealed (x=0.3) alloys generate the largest discharge capacities of 360.8 and 386.5 mA.h/g, respectively. Additionally, the electrochemical cycle stability of all the alloys markedly grows with the increase of Pr content. The capacity retaining rate (S100) at the 100th charging and discharging cycle is enhanced from 64.98% to 77.55% for the as-cast alloy, and from 76.60% to 95.72% for the as-annealed alloy by rising Pr content from 0 to 0.4. Furthermore, the substitution of Pr for La results in first increase and then decrease in the hydrogen diffusion coefficient (D), the limiting current density (IL) as well as the electrochemical impedance.
基金supported by the National Key Research and Development Program of China(Nos.2016YFC0401002 and 2016YFC0401006)National Natural Science Foundation of China(Nos.51577080 and 51821005)。
文摘Efflcient collection of water from fog can effectively alleviate the problem of water shortages in foggy but water-scarce areas,such as deserts,islands and so on.Unlike inefflcient fog meshes,corona discharge can charge water droplets and further enhance the water-collecting effect.This study proposes a novel multi-electrode collecting structure that can achieve efflcient and direction-independent water collection from fog.The multi-electrode structure consists of three parts:a charging electrode,an intercepting electrode and a ground electrode.Four types of watercollecting structures are compared experimentally,and the collection rates from a traditional fog mesh,a wire-mesh electrode with fog coming from a high-voltage electrode,a wire-mesh electrode with fog coming from a ground electrode and a multi-electrode structure are 2–3 g h^(-1),100–120 g h^(-1),60–80 g h^(-1)and 200–220 g h^(-1),respectively.The collection rate of the multielectrode structure is 100–150 times that of a traditional fog mesh and 2–4 times that of a wiremesh electrode.These results demonstrate the superiority of the multi-electrode structure in fog collection.In addition,the motion equation of charged droplets in an electric fleld is also derived,and the optimization strategy of electrode spacing is also discussed.This structure can be applied not only to fog collection,but also to air puriflcation,factory waste gas treatment and other flelds.
基金the National Natural Science Foundation of China(Nos.51777115 and 81527901)the National Key Research and Development Program of China(Nos.2016YFC0105502 and 2016YFC0105900)Tsinghua University Intiative Scientifc Research Program and Major Achievements Transformation Project of Beijing’s College.
文摘The interfacial performance of implanted neural electrodes is crucial for stimulation safety and the recording quality of neuronal activity.This paper proposes a novel surface architecture and optimization strategy for the platinum–iridium(Pt–Ir)electrode to optimize electrochemical performance and wettability.A series of surface micro/nano structures were fabricated on Pt–Ir electrodes with different combinations of four adjustable laser-processing parameters.Subsequently,the electrodes were characterized by scanning electron microscopy,energy-dispersive X-ray spectroscopy,cyclic voltammetry,electrochemical impedance spectroscopy,and wetting behavior.The results show that electrode performance strongly depends on the surface morphology.Increasing scanning overlap along with moderate pulse energy and the right number of pulses leads to enriched surface micro/nano structures and improved electrode performance.It raises the maximum charge storage capacity to 128.2 mC/cm^(2) and the interface capacitance of electrodes to 3.0×10^(4)μF/cm^(2) for the geometric area,compared with 4.6 mC/cm^(2) and 443.1μF/cm2,respectively,for the smooth Pt–Ir electrode.The corresponding optimal results for the optically measured area are 111.8 mC/cm^(2) and 2.6×10^(4)μF/cm^(2),which indicate the contribution of fner structures to the ablation profle.The hierarchical structures formed by the femtosecond laser dramatically enhanced the wettability of the electrode interface,giving it superwicking properties.A wicking speed of approximately 80 mm/s was reached.Our optimization strategy,leading to superior performance of the superwicking Pt–Ir interface,is promising for use in new neural electrodes.
基金supported by the National Natural Science Foundation of China (51773134)the Sichuan Science and Technology Program (2019YFH0112)+2 种基金the Fundamental Research Funds for the Central UniversitiesInstitutional Research Fund from Sichuan University (2021SCUNL201)the 111 Project (B20001)。
文摘The rapid development and widespread application of lithium-ion batteries(LIBs) have increased demand for high-safety and high-performance LIBs. Accordingly, various additives have been used in commercial liquid electrolytes to severally adjust the solvation structure of lithium ions, control the components of solid electrolyte interphase, or reduce flammability. While it is highly desirable to develop low-cost multifunctional electrolyte additives integrally that address both safety and performance on LIBs, significant challenges remain. Herein, a novel phosphorus-containing organic small molecule, bis(2-methoxyethyl) methylphosphonate(BMOP), was rationally designed to serve as a fluorine-free and multifunctional additive in commercial electrolytes. This novel electrolyte additive is low-toxicity,high-efficiency, low-cost, and electrode-compatible, which shows the significant improvement to both electrochemical performance and fire safety for LIBs through regulating the electrolyte solvation structure, constructing the stable electrode-electrolyte interphase, and suppressing the electrolyte combustion. This work provides a new avenue for developing safer and high-performance LIBs.
基金supported by the National Natural Science Foundation of China(Grant No.51672183)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Designing low-cost,easy-fabricated,highly stable and active electrocatalysts for oxygen evolution reaction(OER) is crucial for electrochemical(EC) and solar-driven photoelectrochemical(PEC) water splitting.By using a facile heating-electrodeposition method,here we fabricated a porous but crystalline Fe-doped Ni3 S2.A thin porous surface NiFe hydroxide layer(~10 nm) is then formed through OER-running.By virtue of the core Fe-doped Ni3 S2 with good conductivity and the shell NiFe hydroxide surface with good electrocatalytic activity,the core-shell nanostructure on Ni foam exhibits excellent OER activity in 1 M NaOH,needing only 195 and 230 mV to deliver 10 and 100 mA/cm^(2),respectively,much more superior to those of 216 and 259 mV for the sample deposited under normal temperature.The enhanced photo-response of the sulfide@hydroxide core-shell structure was also demonstrated,due to the efficient transfer of photo-generated carriers on the core/shell interface.More interestingly,it shows a good compatibility with Si based photoanode,which exhibits an excellent PEC performance with an onset potential of 0.86 V vs.reversible hydrogen electrode,an applied bias photon-to-current efficiency of 5.5% and a durability for over 120 h under AM 1.5 G 1 sun illumination,outperforming the state-of-the-art Si based photoanodes.
基金Project(2006AA05Z132) supported by the Hi-tech Research and Development Program of ChinaProject(50701011) supported by the National Natural Science Foundation of China+1 种基金Project(200711020703) supported by the Natural Science Foundation of Inner Mongolia, ChinaProject(NJzy08071) supported by Higher Education Science Research Project of Inner Mongolia, China
文摘The La-Mg-Ni system PuNi3-type La0.5Ce0.2Mg0.3Co0.4Ni2.6-xMnx(x=0,0.1,0.2,0.3,0.4) hydrogen storage alloys were prepared by casting and rapid quenching. The effects of the rapid quenching on the structure and electrochemical characteristics of the alloys were studied. The results obtained by XRD,SEM and TEM indicate that the as-cast and quenched alloys mainly consist of two major phases,(La,Mg)Ni3 and LaNi5,as well as a residual phase LaNi. The rapid quenching does not exert an obvious influence on the phase composition of the alloys,but it leads to an increase of the LaNi5 phase and a decrease of the(La,Mg)Ni3 phase. The as-quenched alloys have a nano-crystalline structure,and the grain sizes of the alloys are in the range of 20-30 nm. The results by the electrochemical measurements indicate that both the discharge capacity and the high rate discharge(HRD) ability of the alloy first increase and then decrease with the variety of quenching rate and obtain the maximum values at the special quenching rate which is changeable with the variety of Mn content. The rapid quenching significantly improves the cycle stabilities of the alloys,but it slightly impairs the activation capabilities of the alloys.
基金supported by the National Science and Technology Support Program of China under Grant No.2013BAK14B03
文摘We present the design, fabrication, and characterization of two new types of terahertz photoconductive emitters. One has an asymmetric four-contact electrode structure and the other has an arc-shaped electrode structure, which are all modified from a traditional strip line antenna. Numerical simulations and real experiments confirm the good performance of the proposed antennas. An amplitude increase of about 40% is experimentally observed for the terahertz signals generated from the new structures. The special electrode structure and its induced local bias field enhancement are responsible for this radiation efficiency improvement. Our work demonstrates the feasibility of developing highly efficient terahertz photoconductive emitters by optimizing the electrode structure.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61076077 and 61106120the National Basic Research Program of China under Grant No 2011CB922103.
文摘Using lateral phase change random access memory(PCRAM)for demonstration,we report a self-aligned process to fabricate a metal electrode-quantum dot(QD)/nanowire(NW)-metal electrode structure.Due to the good confinement and coupling between the Ge_(2)Sb_(2)Te_(5)(GST)QD and the tungsten electrodes,the device shows a threshold current and voltage as small as 2.50μA and 1.08 V,respectively.Our process is highlighted with good controllability and repeatability with 100%yield,making it a promising fabrication process for nanoelectronics.
基金supported by Science and Technology Innovation 2030-Major Project(Grant No.2022ZD0208601)the National Natural Science Foundation of China(Grant Nos.62104056,62106041,and 62204204)+2 种基金the Shanghai Sailing Program(Grant No.21YF1451000)the Key Research and Development Program of Shaanxi(Grant No.2022GY-001)the Fundamental Research Funds for the Central Universities(Grant No.223202100019).
文摘Epidermal electrophysiological monitoring has garnered significant attention for its potential in medical diagnosis and healthcare,particularly in continuous signal recording.However,simultaneously satisfying skin compliance,mechanical properties,environmental adaptation,and biocompatibility to avoid signal attenuation and motion artifacts is challenging,and accurate physiological feature extraction necessitates effective signal-processing algorithms.This review presents the latest advancements in smart electrodes for epidermal electrophysiological monitoring,focusing on materials,structures,and algorithms.First,smart materials incorporating self-adhesion,self-healing,and self-sensing functions offer promising solutions for long-term monitoring.Second,smart meso-structures,together with micro/nanostructures endowed the electrodes with self-adaption and multifunctionality.Third,intelligent algorithms give smart electrodes a“soul,”facilitating faster and more-accurate identification of required information via automatic processing of collected electrical signals.Finally,the existing challenges and future opportunities for developing smart electrodes are discussed.Recognized as a crucial direction for next-generation epidermal electrodes,intelligence holds the potential for extensive,effective,and transformative applications in the future.
基金Project(20374021) supported by the National Natural Science Foundation of China
文摘Ni-Fe-Mo-Co alloy electrode was prepared in a citrate solution by electrodeposition, and then Mo and Fe were partially leached out from the electrode in 30% KOH solution. The unique surface micromorphology of a hive-like structure was obtained with an average pore size of about 50 nm. The electrode has a very large real surface area and a stable structure. The effects of sodium molybdate concentration on the composition, surface morphology, and structure of electrodes were analyzed by EDS, SEM and XRD. The polarization curves of the different electrodes show that the catalytic activity of electrodes is strongly correlated with the mole fraction of alloy elements (Ni, Fe, Mo, Co), and the addition of cobalt element to Ni-Fe-Mo alloy improves the catalytic activity. The Ni35.63Fe24.67Mo23.52Co16.18 electrode has the best activity for hydrogen evolution reaction(HER), with an over-potential of 66.2 mV, in 30% KOH at 80 ℃ and 200 mA/cm2. The alloy maintains its good catalytic activity for HER during continuous or intermittent electrolysis. Its electrochemical activity and catalytic stability are much higher than the other iron-group with Mo alloy electrodes.
文摘The behavior of chloride adsorbed on Ag(100) electrode has been studied using chronoamperometric technique, and the structural transition of chloride layer has been confirmed.
文摘In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- tive materials have the relative large effects on the properties of gadolinium ion selective electrodes.
基金support of the National Natural Science Foundation of China(Nos.U20A6001,12002190,11972207,and 11921002)the Fundamental Research Funds for the Central Universities,China(No.SWUKQ22029)the Chongqing Natural Science Foundation of China(No.CSTB2022NSCQ-MSX1635).
文摘High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.
基金supported by the National Key Research and Development Program of China(No.2021YFC2400201)the National Natural Science Foundation of China(No.81830033)+1 种基金the Natural Science Foundation of Fujian Province,China(No.2023J05097)the Young and Middle-aged Teacher Education Research Project of the Education Department of Fujian Province,China(No.JAT220004)。
文摘Conducting polymers(CPs),including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS),are promising coating materials for neural electrodes.However,the weak adhesion of CP coatings to substrates such as platinum-iridium is a significant challenge that limits their practical application.To address this issue,we used femtosecond laser-prepared hierarchical structures on platinum-iridium(Pt-Ir)substrates to enhance the adhesion of PEDOT:PSS coatings.Next,we used cyclic voltammetry(CV)stress and accelerated aging tests to evaluate the stability of both drop cast and electrodeposited PEDOT:PSS coatings on Pt-Ir substrates,both with and without hierarchical structures.Our results showed that after 2000 CV cycles or five weeks of aging at 60℃,the morphology and electrochemical properties of the coatings on the Pt-Ir substrates with hierarchical structures remained relatively stable.In contrast,we found that smooth Pt-Ir substrate surfaces caused delamination of the PEDOT:PSS coating and exhibited both decreased charge storage capacity and increased impedance.Overall,enhancing the stability of PEDOT:PSS coatings used on common platinum-iridium neural electrodes offers great potential for improving their electrochemical performance and developing new functionalities.
文摘Cardiovascular disease persists as the primary cause of human mortality,significantly impacting healthy life expectancy.The routine electrocardiogram(ECG)stands out as a pivotal noninvasive diagnostic tool for identifying arrhythmias.The evolving landscape of fabric electrodes,specifically designed for the prolonged monitoring of human ECG signals,is the focus of this research.Adhering to the preferred reporting items for systematic reviews and meta-analyses(PRISMA)statement and assimilating data from 81 pertinent studies sourced from reputable databases,the research conducts a comprehensive systematic review and meta-analysis on the materials,fabric structures and preparation methods of fabric electrodes in the existing literature.It provides a nuanced assessment of the advantages and disadvantages of diverse textile materials and structures,elucidating their impacts on the stability of biomonitoring signals.Furthermore,the study outlines current developmental constraints and future trajectories for fabric electrodes.These insights could serve as essential guidance for ECG monitoring system designers,aiding them in the selection of materials that optimize the measurement of biopotential signals.