Cortical electrodes are a powerful tool for the stimulation and/or recording of electrical activity in the nervous system.However,the inevitable wound caused by surgical implantation of electrodes presents bacterial i...Cortical electrodes are a powerful tool for the stimulation and/or recording of electrical activity in the nervous system.However,the inevitable wound caused by surgical implantation of electrodes presents bacterial infection and inflammatory reaction risks associated with foreign body exposure.Moreover,inflammation of the wound area can dramatically worsen in response to bacterial infection.These consequences can not only lead to the failure of cortical electrode implantation but also threaten the lives of patients.Herein,we prepared a hydrogel made of bacterial cellulose(BC),a flexible substrate for cortical electrodes,and further loaded antibiotic tetracycline(TC)and the anti-inflammatory drug dexamethasone(DEX)onto it.The encapsulated drugs can be released from the BC hydrogel and effectively inhibit the growth of Gram-negative and Gram-positive bacteria.Next,therapeutic cortical electrodes were developed by integrating the drug-loaded BC hydrogel and nine-channel serpentine arrays;these were used to record electrocorticography(ECoG)signals in a rat model.Due to the controlled release of TC and DEX from the BC hydrogel substrate,therapeutic cortical electrodes can alleviate or prevent symptoms associated with the bacterial infection and inflammation of brain tissue.This approach facilitates the development of drug delivery electrodes for resolving complications caused by implantable electrodes.展开更多
Damage to the spinal cord disrupts the electrically active nerve cells which normally transmit afferent and efferent signals,resulting in loss of motor,sensory,and autonomic functions.Potential treatments for spinal c...Damage to the spinal cord disrupts the electrically active nerve cells which normally transmit afferent and efferent signals,resulting in loss of motor,sensory,and autonomic functions.Potential treatments for spinal cord injury utilizing implanted spinal electrodes can be broadly classified into three different categories.The first of these approaches is“spinal stimulation”where electrodes,usually positioned above the level of injury,provide electrical stimulation to target and disrupt pain signals before they reach the brain.The second approach uses“activity-dependent neuro-technologies”,in which electrodes positioned below the level of injury initiate a complex spatiotemporal pattern of stimulation at the lumbar spinal cord to generate a walking gait in the limbs(Minev et al.,2015;Wagner et al.,2018).展开更多
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr...The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.展开更多
Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily s...Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.展开更多
The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrat...The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules.展开更多
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us...Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.展开更多
Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among...Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.展开更多
Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is ...Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.展开更多
The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)R...The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs.展开更多
Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stab...Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.展开更多
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano...Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.展开更多
Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring ...Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.展开更多
Thick electrodes can substantially enhance the overall energy density of batteries.However,insufficient wettability of aqueous electrolytes toward electrodes with conventional hydrophobic binders severely limits utili...Thick electrodes can substantially enhance the overall energy density of batteries.However,insufficient wettability of aqueous electrolytes toward electrodes with conventional hydrophobic binders severely limits utilization of active materials with increasing the thickness of electrodes for aqueous batteries,resulting in battery performance deterioration with a reduced capacity.Here,we demonstrate that controlling the hydrophilicity of the thicker electrodes is critical to enhancing the overall energy density of batteries.Hydrophilic binders are synthesized via a simple sulfonation process of conventional polyvinylidene fluoride binders,considering physicochemical properties such as mechanical properties and adhesion.The introduction of abundant sulfonate groups of binders(i)allows fast and sufficient electrolyte wetting,and(ii)improves ionic conduction in thick electrodes,enabling a significant increase in reversible capacities under various current densities.Further,the sulfonated binder effectively inhibits the dissolution of cathode materials in reactive aqueous electrolytes.Overall,our findings significantly enhance the energy density and contribute to the development of practical zinc-ion batteries.展开更多
Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alterna...Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics.展开更多
The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the ba...The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the balance between electrode activity and stability more difficult.Here,we develop an efficient and durable electrode for water oxidation reaction(WOR),which yields a high current density of 1000 mA cm−2 at an overpotential of only 284 mV in 1M KOH at 25°C and shows robust stability even in 6M KOH strong alkali with an elevated temperature up to 80°C.This electrode is fabricated from a cheap nickel foam(NF)substrate through a simple one-step solution etching method,resulting in the growth of ultrafine phosphorus doped nickel-iron(oxy)hydroxide[P-(Ni,Fe)O_(x)H_(y)]nanoparticles embedded into abundant micropores on the surface,featured as a self-stabilized catalyst–substrate fusion electrode.Such self-stabilizing effect fastens highly active P-(Ni,Fe)O_(x)H_(y)species on conductive NF substrates with significant contribution to catalyst fixation and charge transfer,realizing a win–win tactics for WOR activity and durability at high current densities in harsh environments.This work affords a cost-effective WOR electrode that can well work at large current densities,suggestive of the rational design of catalyst electrodes toward industrial-scale water electrolysis.展开更多
Stretchable elastomer-based electrodes are considered promising energy storage electrodes for next-generation wearable/flexible electronics requiring various shape designs.However,these elastomeric electrodes suffer f...Stretchable elastomer-based electrodes are considered promising energy storage electrodes for next-generation wearable/flexible electronics requiring various shape designs.However,these elastomeric electrodes suffer from the limited electrical conductivity of current collectors,low charge storage capacities,poor interfacial interactions between elastomers and conductive/active materials,and lack of shape controllability.In this study,we report hierarchically micro/nano-wrinkle-structured elastomeric electrodes with notably high energy storage performance and good mechanical/electrochemical stabilities,simultaneously allowing various form factors.For this study,a swelling/deswelling-involved metal nanoparticle(NP)assembly is first performed on thiol-functionalized polydimethylsiloxane(PDMS)elastomers,generating a micro-wrinkled structure and a conductive seed layer for subsequent electrodeposition.After the assembly of metal NPs,the conformal electrodeposition of Ni and NiCo layered double hydroxides layers with a homogeneous nanostructure on the micro-wrinkled PDMS induces the formation of a micro/nano-wrinkled surface morphology with a large active surface area and high electrical conductivity.Based on this unique approach,the formed elastomeric electrodes show higher areal capacity and superior rate capability than conventional elastomeric electrodes while maintaining their electrical/electrochemical properties under external mechanical deformation.This notable mechanical/electrochemical performance can be further enhanced by using spiral-structured PDMS(stretchability of~500%)and porous-structured PDMS(areal capacity of~280μAh cm^(-2)).展开更多
Epidermal electrophysiological monitoring has garnered significant attention for its potential in medical diagnosis and healthcare,particularly in continuous signal recording.However,simultaneously satisfying skin com...Epidermal electrophysiological monitoring has garnered significant attention for its potential in medical diagnosis and healthcare,particularly in continuous signal recording.However,simultaneously satisfying skin compliance,mechanical properties,environmental adaptation,and biocompatibility to avoid signal attenuation and motion artifacts is challenging,and accurate physiological feature extraction necessitates effective signal-processing algorithms.This review presents the latest advancements in smart electrodes for epidermal electrophysiological monitoring,focusing on materials,structures,and algorithms.First,smart materials incorporating self-adhesion,self-healing,and self-sensing functions offer promising solutions for long-term monitoring.Second,smart meso-structures,together with micro/nanostructures endowed the electrodes with self-adaption and multifunctionality.Third,intelligent algorithms give smart electrodes a“soul,”facilitating faster and more-accurate identification of required information via automatic processing of collected electrical signals.Finally,the existing challenges and future opportunities for developing smart electrodes are discussed.Recognized as a crucial direction for next-generation epidermal electrodes,intelligence holds the potential for extensive,effective,and transformative applications in the future.展开更多
In plane micro-supercapacitors that are miniaturized energy storage components have attracted significant attention due to their high power densities for various ubiquitous and sustainable device systems as well as th...In plane micro-supercapacitors that are miniaturized energy storage components have attracted significant attention due to their high power densities for various ubiquitous and sustainable device systems as well as their facile integration on various flexible/wearable platform.To implement the micro-supercapacitors in various practical applications that can accompany solid state or gel electrolyte and flexible substrates,ions must be readily transported to electrodes for achieving high power densities.Herein,we show large enhancement in electrochemical properties of flexible,inplane micro-supercapacitor using sharp-edged interdigitated electrode design,which was simply fabricated through direct laser scribing method.The sharp-edged electrodes allowed strong electric field to be induced at the corners of the electrode fingers which led to the greater accumulation of ions near the surface of electrode,significantly enhancing the energy storage performance of micro-supercapacitors.The electric field-enhanced in-plane micro-supercapacitor showed the volumetric energy density of 1.52 Wh L^(−1)and the excellent cyclability with capacitive retention of 95.4%after 20000 cycles.We further showed various practicability of our sharp-edged design in micro-supercapacitors by showing circuit applicability,mechanical stability,and air stability.These results present an important pathway for designing electrodes in various energy storage devices.展开更多
This paper focuses on the effects of compaction on the microstructure of graphite-resin electrochemical treatment electrodes. This was with a view to understanding the relationships between forming parameters and some...This paper focuses on the effects of compaction on the microstructure of graphite-resin electrochemical treatment electrodes. This was with a view to understanding the relationships between forming parameters and some performance-limiting structural parameters of the electrode. Graphite resin electrodes were developed from graphite rods reclaimed from primary cells. The rods were crushed to powder of various particle sizes and compressed into the graphite-resin electrodes. The microstructure of the graphite electrode was observed, effects of compaction force and particles sizes distribution on the microstructure of the electrodes were observed. SEM/EDX revealed that there is a lack of homogeneity in the distribution of micro-constituents, with compositional variations differing at the various spots. However, there is a prevalence of carbon and oxygen at almost all the spots. This tends to confirm the even distribution of the elements throughout the material. The pores in the electrodes were noticed to be uniformly sized and permeate throughout the entire structure of the electrode. These pores serve to increase the surface area of these electrodes and promote the adsorption of environmental pollutants.展开更多
Implating ions with high-energy into the surface of electrode can introduce catalytically active elements, and thus form a large number of active centers to improve the catalytical activity. As a result of implanting ...Implating ions with high-energy into the surface of electrode can introduce catalytically active elements, and thus form a large number of active centers to improve the catalytical activity. As a result of implanting nickel ions into Ti-electrode we get a overpotential decrease of hydrogen evolution by 245 mV and the electrode was much more active than the unimplanted one. The experiment shows that the catalytical activity of the electrodes raises with the increase of the surface nickel ions concentration. The maximum concentration of ions were not on the electrode surface, as the deep distribution of the展开更多
基金support from the National Natural Science Foundation of China(Nos.52073230,62204204,and 62288102)the Shaanxi Provincial Science Fund for Distinguished Young Scholars(No.2023-JC-JQ-32)+2 种基金the Science and Technology Innovation 2030-Major Project(No.2022ZD0208601)the Shanghai Sailing Program(No.21YF1451000)the China National Postdoctoral Program for Innovative Talents(No.BX20230494).
文摘Cortical electrodes are a powerful tool for the stimulation and/or recording of electrical activity in the nervous system.However,the inevitable wound caused by surgical implantation of electrodes presents bacterial infection and inflammatory reaction risks associated with foreign body exposure.Moreover,inflammation of the wound area can dramatically worsen in response to bacterial infection.These consequences can not only lead to the failure of cortical electrode implantation but also threaten the lives of patients.Herein,we prepared a hydrogel made of bacterial cellulose(BC),a flexible substrate for cortical electrodes,and further loaded antibiotic tetracycline(TC)and the anti-inflammatory drug dexamethasone(DEX)onto it.The encapsulated drugs can be released from the BC hydrogel and effectively inhibit the growth of Gram-negative and Gram-positive bacteria.Next,therapeutic cortical electrodes were developed by integrating the drug-loaded BC hydrogel and nine-channel serpentine arrays;these were used to record electrocorticography(ECoG)signals in a rat model.Due to the controlled release of TC and DEX from the BC hydrogel substrate,therapeutic cortical electrodes can alleviate or prevent symptoms associated with the bacterial infection and inflammation of brain tissue.This approach facilitates the development of drug delivery electrodes for resolving complications caused by implantable electrodes.
基金supported by the CatWalk Spinal Cord Injury Trust and the Health Research Council of New Zealand(Project grant and HRC/Catwalk Partnership 19/895)(to DS).
文摘Damage to the spinal cord disrupts the electrically active nerve cells which normally transmit afferent and efferent signals,resulting in loss of motor,sensory,and autonomic functions.Potential treatments for spinal cord injury utilizing implanted spinal electrodes can be broadly classified into three different categories.The first of these approaches is“spinal stimulation”where electrodes,usually positioned above the level of injury,provide electrical stimulation to target and disrupt pain signals before they reach the brain.The second approach uses“activity-dependent neuro-technologies”,in which electrodes positioned below the level of injury initiate a complex spatiotemporal pattern of stimulation at the lumbar spinal cord to generate a walking gait in the limbs(Minev et al.,2015;Wagner et al.,2018).
基金This work was supported by the National Natural Science Foundation of China(nos.21988102,and 22305026)the China Postdoctoral Science Foundation(2019M650433).
文摘The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.
基金the support from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Hydrogen and Fuel Cell Technologies Office Awards DE-EE0008426 and DE-EE0008423National Energy Technology Laboratory under Award DEFE0011585.
文摘Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.
基金supported by the National Research Foundation of Korea funded by the Ministry of Science and ICT (MSIT),Korea (NRF-2021R1C1C1009200 and 2023R1A2C3007358)supported by the Defense Challengeable Future Technology Program of the Agency for Defense Development,Republic of Koreasupported by Technology Innovation Program of the Korea Evaluation Institute of Industrial Technology (KEIT) (20016588)funded by Ministry of Trade,Industry and Energy (MOTIE).
文摘The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules.
基金supported by the National Key Research and Development Program of China,China(2019YFA0705102)the National Natural Science Foundation of China,China(22179144,22005332)。
文摘Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.
基金supported by the National Natural Science Foundation of China(22072107,21872105)the Natural Science Foundation of Shanghai(23ZR1464800)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Science&Technology Commission of Shanghai Municipality(19DZ2271500)。
文摘Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.
基金supported by the Science and Technology Innovation Program of Hunan Province(2022WZ1012)the Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy(2020CB1007)the Natural Science Foundation of Guangzhou(202201020147)。
文摘Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korean Government(MSIT)(2019M3E6A1103944,2020R1A2C2010690).
文摘The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs.
基金supported in part by the National Natural Science Foundation of China(Grant No.62104056)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ21F010010)+4 种基金the National Natural Science Foundation of China(Grant Nos.62141409 and 62204204)the National Key R&D Program of China(Grant No.2022ZD0208602)the Zhejiang Provincial Key Research&Development Fund(Grant Nos.2019C04003 and 2021C01041)the Shanghai Sailing Program(Grant No.21YF1451000)the Key Research and Development Program of Shaanxi(Grant No.2022GY-001).
文摘Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.
基金supported by the National Natural Science Foundation of China(T2322015,22209094,22209093,and 22109086)the National Key Research and Development Program(2021YFB2500300)+2 种基金the Open Research Fund of CNMGE Platform&NSCC-TJOrdos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutralitythe Tsinghua University Initiative Scientific Research Program。
文摘Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.
基金financial support from The University of Manchester to cover his PhD tuition fees for him to carry out this workChina National High-end Foreign Experts Recruitment Plan Project (G2023018001L) for partially supporting the work。
文摘Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1F1A1070168,2020R1C1C1004322)the Korea Institute of Industrial Technology as Development of core technology for smart wellness care based on cleaner production process technology(KITECH-PEH23030)+1 种基金supported by the Renewable Surplus Sector Coupling Technology Program of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20226210100050)the National Research Council of Science&Technology(NST)grant by the Korea government(MSIT)(No.CPS21141-100)。
文摘Thick electrodes can substantially enhance the overall energy density of batteries.However,insufficient wettability of aqueous electrolytes toward electrodes with conventional hydrophobic binders severely limits utilization of active materials with increasing the thickness of electrodes for aqueous batteries,resulting in battery performance deterioration with a reduced capacity.Here,we demonstrate that controlling the hydrophilicity of the thicker electrodes is critical to enhancing the overall energy density of batteries.Hydrophilic binders are synthesized via a simple sulfonation process of conventional polyvinylidene fluoride binders,considering physicochemical properties such as mechanical properties and adhesion.The introduction of abundant sulfonate groups of binders(i)allows fast and sufficient electrolyte wetting,and(ii)improves ionic conduction in thick electrodes,enabling a significant increase in reversible capacities under various current densities.Further,the sulfonated binder effectively inhibits the dissolution of cathode materials in reactive aqueous electrolytes.Overall,our findings significantly enhance the energy density and contribute to the development of practical zinc-ion batteries.
基金supported by the National Natural Science Foundation of China(Grant No.52175331)the Support plan for Outstanding Youth Innovation Team in Universities of Shandong Province,China(Grand No.2020KJB003)Natural Science Foundation of Shandong Province,China(Granted Nos.ZR2022ME014,ZR2021ME139 and ZR2020ZD04)。
文摘Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics.
基金National Natural Science Foundation of China,Grant/Award Numbers:11974303,12074332Qinglan Project of Jiangsu Province,Grant/Award Number:137050317the Interdisciplinary Research Project of Chemistry Discipline,Grant/Award Number:yzuxk202014 and High‐End Talent Program of Yangzhou University,Grant/Award Number:137080051。
文摘The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the balance between electrode activity and stability more difficult.Here,we develop an efficient and durable electrode for water oxidation reaction(WOR),which yields a high current density of 1000 mA cm−2 at an overpotential of only 284 mV in 1M KOH at 25°C and shows robust stability even in 6M KOH strong alkali with an elevated temperature up to 80°C.This electrode is fabricated from a cheap nickel foam(NF)substrate through a simple one-step solution etching method,resulting in the growth of ultrafine phosphorus doped nickel-iron(oxy)hydroxide[P-(Ni,Fe)O_(x)H_(y)]nanoparticles embedded into abundant micropores on the surface,featured as a self-stabilized catalyst–substrate fusion electrode.Such self-stabilizing effect fastens highly active P-(Ni,Fe)O_(x)H_(y)species on conductive NF substrates with significant contribution to catalyst fixation and charge transfer,realizing a win–win tactics for WOR activity and durability at high current densities in harsh environments.This work affords a cost-effective WOR electrode that can well work at large current densities,suggestive of the rational design of catalyst electrodes toward industrial-scale water electrolysis.
基金the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT,Ministry of Science and ICT)(NRF-2021R1A2C3004151)Ministry of Education(NRF-2022R1A6A3A01086019)the KU-KIST School Program.
文摘Stretchable elastomer-based electrodes are considered promising energy storage electrodes for next-generation wearable/flexible electronics requiring various shape designs.However,these elastomeric electrodes suffer from the limited electrical conductivity of current collectors,low charge storage capacities,poor interfacial interactions between elastomers and conductive/active materials,and lack of shape controllability.In this study,we report hierarchically micro/nano-wrinkle-structured elastomeric electrodes with notably high energy storage performance and good mechanical/electrochemical stabilities,simultaneously allowing various form factors.For this study,a swelling/deswelling-involved metal nanoparticle(NP)assembly is first performed on thiol-functionalized polydimethylsiloxane(PDMS)elastomers,generating a micro-wrinkled structure and a conductive seed layer for subsequent electrodeposition.After the assembly of metal NPs,the conformal electrodeposition of Ni and NiCo layered double hydroxides layers with a homogeneous nanostructure on the micro-wrinkled PDMS induces the formation of a micro/nano-wrinkled surface morphology with a large active surface area and high electrical conductivity.Based on this unique approach,the formed elastomeric electrodes show higher areal capacity and superior rate capability than conventional elastomeric electrodes while maintaining their electrical/electrochemical properties under external mechanical deformation.This notable mechanical/electrochemical performance can be further enhanced by using spiral-structured PDMS(stretchability of~500%)and porous-structured PDMS(areal capacity of~280μAh cm^(-2)).
基金supported by Science and Technology Innovation 2030-Major Project(Grant No.2022ZD0208601)the National Natural Science Foundation of China(Grant Nos.62104056,62106041,and 62204204)+2 种基金the Shanghai Sailing Program(Grant No.21YF1451000)the Key Research and Development Program of Shaanxi(Grant No.2022GY-001)the Fundamental Research Funds for the Central Universities(Grant No.223202100019).
文摘Epidermal electrophysiological monitoring has garnered significant attention for its potential in medical diagnosis and healthcare,particularly in continuous signal recording.However,simultaneously satisfying skin compliance,mechanical properties,environmental adaptation,and biocompatibility to avoid signal attenuation and motion artifacts is challenging,and accurate physiological feature extraction necessitates effective signal-processing algorithms.This review presents the latest advancements in smart electrodes for epidermal electrophysiological monitoring,focusing on materials,structures,and algorithms.First,smart materials incorporating self-adhesion,self-healing,and self-sensing functions offer promising solutions for long-term monitoring.Second,smart meso-structures,together with micro/nanostructures endowed the electrodes with self-adaption and multifunctionality.Third,intelligent algorithms give smart electrodes a“soul,”facilitating faster and more-accurate identification of required information via automatic processing of collected electrical signals.Finally,the existing challenges and future opportunities for developing smart electrodes are discussed.Recognized as a crucial direction for next-generation epidermal electrodes,intelligence holds the potential for extensive,effective,and transformative applications in the future.
基金supported by a National Research Foundation of Korea grant funded by the Korean government(MSIT)(2020R1A2C1101039)by Korea Institute of Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry,and Energy(MOTIE)of the Republic of Korea(20204030200060)supported by the Soonchunhyang University Research Fund
文摘In plane micro-supercapacitors that are miniaturized energy storage components have attracted significant attention due to their high power densities for various ubiquitous and sustainable device systems as well as their facile integration on various flexible/wearable platform.To implement the micro-supercapacitors in various practical applications that can accompany solid state or gel electrolyte and flexible substrates,ions must be readily transported to electrodes for achieving high power densities.Herein,we show large enhancement in electrochemical properties of flexible,inplane micro-supercapacitor using sharp-edged interdigitated electrode design,which was simply fabricated through direct laser scribing method.The sharp-edged electrodes allowed strong electric field to be induced at the corners of the electrode fingers which led to the greater accumulation of ions near the surface of electrode,significantly enhancing the energy storage performance of micro-supercapacitors.The electric field-enhanced in-plane micro-supercapacitor showed the volumetric energy density of 1.52 Wh L^(−1)and the excellent cyclability with capacitive retention of 95.4%after 20000 cycles.We further showed various practicability of our sharp-edged design in micro-supercapacitors by showing circuit applicability,mechanical stability,and air stability.These results present an important pathway for designing electrodes in various energy storage devices.
文摘This paper focuses on the effects of compaction on the microstructure of graphite-resin electrochemical treatment electrodes. This was with a view to understanding the relationships between forming parameters and some performance-limiting structural parameters of the electrode. Graphite resin electrodes were developed from graphite rods reclaimed from primary cells. The rods were crushed to powder of various particle sizes and compressed into the graphite-resin electrodes. The microstructure of the graphite electrode was observed, effects of compaction force and particles sizes distribution on the microstructure of the electrodes were observed. SEM/EDX revealed that there is a lack of homogeneity in the distribution of micro-constituents, with compositional variations differing at the various spots. However, there is a prevalence of carbon and oxygen at almost all the spots. This tends to confirm the even distribution of the elements throughout the material. The pores in the electrodes were noticed to be uniformly sized and permeate throughout the entire structure of the electrode. These pores serve to increase the surface area of these electrodes and promote the adsorption of environmental pollutants.
文摘Implating ions with high-energy into the surface of electrode can introduce catalytically active elements, and thus form a large number of active centers to improve the catalytical activity. As a result of implanting nickel ions into Ti-electrode we get a overpotential decrease of hydrogen evolution by 245 mV and the electrode was much more active than the unimplanted one. The experiment shows that the catalytical activity of the electrodes raises with the increase of the surface nickel ions concentration. The maximum concentration of ions were not on the electrode surface, as the deep distribution of the