The quantitative analysis of electroencephalographic activity (EEG) is a useful tool for the study of changes in brain electrical activity during cognitive and behavioral functions in several experimental conditions. ...The quantitative analysis of electroencephalographic activity (EEG) is a useful tool for the study of changes in brain electrical activity during cognitive and behavioral functions in several experimental conditions. Their recording and analysis are currently carried out primarily through the use of computer programs. This paper presents a computerized program (EEGbands) created for Windows operating systems using the Delphi language, and designed to analyze EEG signals and facilitate their quantitative exploration. EEGbands applies Rapid Fourier Transformation to the EEG signals of one or more groups of subjects to obtain absolute and relative power spectra. It also calculates both interhemispheric and intrahemispheric correlation and coherence spectra and, finally, applies parametrical statistical analysis to these spectral parameters calculated for wide frequency EEG bands. Unlike other programs, EEGbands is simple and inexpensive, and rapidly and precisely generates results files with the corresponding statistical significances. The efficacy and versatility of EEGbands allow it to be easily adapted to different experimental and clinical needs.展开更多
Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research comm...Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research community with an opportunity to develop automated real-time identification techniques to detect the signs of hypoxic-ischemic-encephalopathy in larger electroencephalography/amplitude-integrated electroencephalography data sets more easily. This review details the recent achievements, performed by a number of prominent research groups across the world, in the automatic identification and classification of hypoxic-ischemic epileptiform neonatal seizures using advanced signal processing and machine learning techniques. This review also addresses the clinical challenges that current automated techniques face in order to be fully utilized by clinicians, and highlights the importance of upgrading the current clinical bedside sampling frequencies to higher sampling rates in order to provide better hypoxic-ischemic biomarker detection frameworks. Additionally, the article highlights that current clinical automated epileptiform detection strategies for human neonates have been only concerned with seizure detection after the therapeutic latent phase of injury. Whereas recent animal studies have demonstrated that the latent phase of opportunity is critically important for early diagnosis of hypoxic-ischemic-encephalopathy electroencephalography biomarkers and although difficult, detection strategies could utilize biomarkers in the latent phase to also predict the onset of future seizures.展开更多
Electroencephalogram(EEG) signals contain important information about the regulation of brain system. Thus, automatic detection of epilepsy by analyzing the characteristics obtained from EEG signals has important rese...Electroencephalogram(EEG) signals contain important information about the regulation of brain system. Thus, automatic detection of epilepsy by analyzing the characteristics obtained from EEG signals has important research implications in the field of clinical medicine. In this paper, the horizontal visibility graph(HVG) algorithm is used to map multifractal EEG signals into complex networks. Then, we study the structure of the networks and explore the nonlinear dynamics properties of the EEG signals inherited from these networks. In order to better describe complex brain behaviors, we use the angle between two connected nodes as the edge weight of the network and construct the weighted horizontal visibility graph(WHVG). In our studies, fractality and multifractality of WHVG are innovatively used to analyze the structure of related networks. However, these methods only analyze the reconstructed dynamical system in general characterizations,they are not sufficient to describe the complex behavior and cannot provide a comprehensive picture of the system. To this effect, we propose an improved multiscale multifractal analysis(MMA) for network, which extends the description of the network dynamics features by focusing on the relationship between the multifractality and the measured scale-free intervals.Furthermore, neural networks are applied to train the above-mentioned parameters for the classification and identification of three kinds of EEG signals, i.e., health, interictal phase, and ictal phase. By evaluating our experimental results, the classification accuracy is 99.0%, reflecting the effectiveness of the WHVG algorithm in extracting the potential dynamic characteristics of EEG signals.展开更多
The assessment of emotions with fractal dimensions of EEG signals has been attempted before, but the quantification of the intensity and duration of sudden and short emotions remains a challenge. This paper suggests a...The assessment of emotions with fractal dimensions of EEG signals has been attempted before, but the quantification of the intensity and duration of sudden and short emotions remains a challenge. This paper suggests a method for this purpose, by using a new fractal dimension algorithm and by adjusting the amplitude of the EEG signal in order to obtain maximal separation of high and low fractal dimensions. The emotion was induced by embedding a scary image at 20 seconds in landscape videos of 60 seconds length. The new method did not only detect the onset of the emotion correctly, but also revealed its duration and intensity. The intensity is based on the magnitude and impulse of the fractal dimension signal. It is also shown that Higuchi’s method does not always detect emotion spikes correctly;on the contrary, the region of the expected emotional response can be represented by fractal dimensions smaller than the rest of the signal, whereas the new method directly reveals distinct spikes. The duration of these spikes was 10 - 11 seconds. The magnitude of these spikes varied across the EEG channels. The build-up and cool-down of the emotions can occur with steep and flat gradients.展开更多
In this paper we propose an efcient process of physiological artifact elimination methodology from brain waves(BW),which are also commonly known as electroencephalogram(EEG)signal.In a clinical environment during the ...In this paper we propose an efcient process of physiological artifact elimination methodology from brain waves(BW),which are also commonly known as electroencephalogram(EEG)signal.In a clinical environment during the acquisition of BW several artifacts contaminates the actual BW component.This leads to inaccurate and ambiguous diagnosis.As the statistical nature of the EEG signal is more non-stationery,adaptive ltering is the more promising method for the process of artifact elimination.In clinical conditions,the conventional adaptive techniques require many numbers of computational operations and leads to data samples overlapping and instability of the algorithm used.This causes delay in diagnosis and decision making.To overcome this problem in our work we propose to set a threshold value to diminish the problem of round off error.The resultant adaptive algorithm based on this strategy is Non-linear Least mean square(NL2MS)algorithm.Again,to improve this algorithm in terms of ltering capability we perform data normalization,using this algorithm several hybrid versions are developed to improve ltering and reduce computational operations.Using the method,a new signal enhancement unit(SEU)is realized and performance of various hybrid versions of algorithms examined using real EEG signals recorded from the subject.The ability of the proposed schemes is measured in terms of convergence,enhancement and multiplications required.Among various SEUs,the MCN2L 2MS algorithm achieves 14.6734,12.8732,10.9257,15.7790 dB during the artifact removal of RA,EMG,CSA and EBA components with only two multiplications.Hence,this algorithm seems to be better candidate for artifact elimination.展开更多
With the development of human-computer interaction technology,brain-computer interface(BCI)has been widely used in medical,entertainment,military,and other fields.Imagined speech is the latest paradigm of BCI and repr...With the development of human-computer interaction technology,brain-computer interface(BCI)has been widely used in medical,entertainment,military,and other fields.Imagined speech is the latest paradigm of BCI and represents the mental process of imagining a word without making a sound or making clear facial movements.Imagined speech allows patients with physical disabilities to communicate with the outside world and use smart devices through imagination.Imagined speech can meet the needs of more complex manipulative tasks considering its more intuitive features.This study proposes a classification method of imagined speech Electroencephalogram(EEG)signals with discrete wavelet transform(DWT)and support vector machine(SVM).An open dataset that consists of 15 subjects imagining speaking six different words,namely,up,down,left,right,backward,and forward,is used.The objective is to improve the classification accuracy of imagined speech BCI system.The features of EEG signals are first extracted by DWT,and the imagined words are clas-sified by SVM with the above features.Experimental results show that the proposed method achieves an average accuracy of 61.69%,which is better than those of existing methods for classifying imagined speech tasks.展开更多
This special issue of The Journal of Biomedical Research features novel studies on epileptic seizure detection and prediction based on advanced EEG signal processing and machine learning algorithms.The articles select...This special issue of The Journal of Biomedical Research features novel studies on epileptic seizure detection and prediction based on advanced EEG signal processing and machine learning algorithms.The articles selected present important findings including new experimental results and theoretical studies.展开更多
The term Epilepsy refers to a most commonly occurring brain disorder after a migraine.Early identification of incoming seizures significantly impacts the lives of people with Epilepsy.Automated detection of epileptic ...The term Epilepsy refers to a most commonly occurring brain disorder after a migraine.Early identification of incoming seizures significantly impacts the lives of people with Epilepsy.Automated detection of epileptic seizures(ES)has dramatically improved the life quality of the patients.Recent Electroencephalogram(EEG)related seizure detection mechanisms encountered several difficulties in real-time.The EEGs are the non-stationary signal,and seizure patternswould changewith patients and recording sessions.Further,EEG data were disposed to wide noise varieties that adversely moved the recognition accuracy of ESs.Artificial intelligence(AI)methods in the domain of ES analysis use traditional deep learning(DL),and machine learning(ML)approaches.This article introduces an Oppositional Aquila Optimizer-based Feature Selection with Deep Belief Network for Epileptic Seizure Detection(OAOFS-DBNECD)technique using EEG signals.The primary aim of the presented OAOFS-DBNECD system is to categorize and classify the presence of ESs.The suggested OAOFS-DBNECD technique transforms the EEG signals into.csv format at the initial stage.Next,the OAOFS technique selects an optimal subset of features using the preprocessed data.For seizure classification,the presented OAOFS-DBNECD technique applies Artificial Ecosystem Optimizer(AEO)with a deep belief network(DBN)model.An extensive range of simulations was performed on the benchmark dataset to ensure the enhanced performance of the presented OAOFS-DBNECD algorithm.The comparison study shows the significant outcomes of the OAOFS-DBNECD approach over other methodologies.In addition,the result of the suggested approach has been evaluated using the CHB-MIT database,and the findings demonstrate accuracy of 97.81%.These findings confirmed the best seizure categorization accuracy on the EEG data considered.展开更多
Epilepsy is a central nervous system disorder in which brain activity becomes abnormal.Electroencephalogram(EEG)signals,as recordings of brain activity,have been widely used for epilepsy recognition.To study epilep-ti...Epilepsy is a central nervous system disorder in which brain activity becomes abnormal.Electroencephalogram(EEG)signals,as recordings of brain activity,have been widely used for epilepsy recognition.To study epilep-tic EEG signals and develop artificial intelligence(AI)-assist recognition,a multi-view transfer learning(MVTL-LSR)algorithm based on least squares regression is proposed in this study.Compared with most existing multi-view transfer learning algorithms,MVTL-LSR has two merits:(1)Since traditional transfer learning algorithms leverage knowledge from different sources,which poses a significant risk to data privacy.Therefore,we develop a knowledge transfer mechanism that can protect the security of source domain data while guaranteeing performance.(2)When utilizing multi-view data,we embed view weighting and manifold regularization into the transfer framework to measure the views’strengths and weaknesses and improve generalization ability.In the experimental studies,12 different simulated multi-view&transfer scenarios are constructed from epileptic EEG signals licensed and provided by the Uni-versity of Bonn,Germany.Extensive experimental results show that MVTL-LSR outperforms baselines.The source code will be available on https://github.com/didid5/MVTL-LSR.展开更多
At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels w...At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels will result in a large amount of calculation.Components irrelevant to the task will interfere with the required features,which is not conducive to the real-time processing of EEG data.Using too few channels will result in the loss of useful information and low robustness.A method of selecting data channels for motion imagination is proposed based on the time-frequency cross mutual information(TFCMI).This method determines the required data channels in a targeted manner,uses the common spatial pattern mode for feature extraction,and uses support vector ma-chine(SVM)for feature classification.An experiment is designed to collect motor imagery EEG da-ta with four experimenters and adds brain-computer interface(BCI)Competition IV public motor imagery experimental data to verify the method.The data demonstrates that compared with the meth-od of selecting too many or too few data channels,the time-frequency cross mutual information meth-od using motor imagery can improve the recognition accuracy and reduce the amount of calculation.展开更多
Brain-Computer Interface(BCI)technology is a way for humans to explore the mysteries of the brain and has applications in many areas of real life.People use this technology to capture brain waves and analyze the elect...Brain-Computer Interface(BCI)technology is a way for humans to explore the mysteries of the brain and has applications in many areas of real life.People use this technology to capture brain waves and analyze the electroencephalograph(EEG)signal for feature extraction.Take the medical field as an example,epilepsy disease is threatening human health every moment.We propose a convolutional neural network SECNN-LSTM framework based on the attention mechanism can automatically perform feature extraction and analysis on the collected EEG signals of patients to complete the prediction of epilepsy diseases,overcoming the problem that the disease requires long time EEG monitoring and analysis by manual,which is a large workload and relatively subjective,and improving the prediction accuracy of epilepsy diseases by adding the attention mechanism module.Through experimental tests,the algorithm of SECNN-LSTM can effectively predict the EEG signal of epilepsy disease,and the correct recognition rate is improved.The experiment has some reference value for the subsequent research of EEG signals in other fields in deep learning.展开更多
The utilization of quantum states for the representation of information and the advances in machine learning is considered as an efficient way of modeling the working of complex systems.The states of mind or judgment ...The utilization of quantum states for the representation of information and the advances in machine learning is considered as an efficient way of modeling the working of complex systems.The states of mind or judgment outcomes are highly complex phenomena that happen inside the human body.Decoding these states is significant for improving the quality of technology and providing an impetus to scientific research aimed at understanding the functioning of the human mind.One of the key advantages of quantum wave-functions over conventional classical models is the existence of configurable hidden variables,which provide more data density due to its exponential state-space growth.These hidden variables correspond to the amplitudes of each probable state of the system and allow for the modeling of various intricate aspects of measurable and observable physical quantities.This makes the quantum wave-functions powerful and felicitous to model cognitive states of the human mind,as it inherits the ability to efficiently couple the current context with past experiences temporally and spatially to approach an appropriate future cognitive state.This paper implements and compares some techniques like Variational Quantum Classifiers(VQC),quantum annealing classifiers,and hybrid quantum-classical neural networks,to harness the power of quantum computing for processing cognitive states of the mind by making use of EEG data.It also introduces a novel pipeline by logically combining some of the aforementioned techniques,to predict future cognitive responses.The preliminary results of these approaches are presented and are very encouraging with upto 61.53%validation accuracy.展开更多
The aim of this study is to identify the functions and states of the brains according to the values of the complexity measure of the EEG signals. The EEG signals of 30 normal samples and 30 patient samples are collect...The aim of this study is to identify the functions and states of the brains according to the values of the complexity measure of the EEG signals. The EEG signals of 30 normal samples and 30 patient samples are collected. Based on the preprocessing for the raw data, a computational program for complexity measure is compiled and the complexity measures of all samples are calculated. The mean value and standard error of complexity measure of control group is as 0.33 and 0.10, and the normal group is as 0.53 and 0.08. When the confidence degree is 0.05, the confidence interval of the normal population mean of complexity measures for the control group is (0.2871,0.3652), and (0.4944,0.5552) for the normal group. The statistic results show that the normal samples and patient samples can be clearly distinguished by the value of measures. In clinical medicine, the results can be used to be a reference to evaluate the function or state, to diagnose disease, to monitor the rehabilitation progress of the brain.展开更多
文摘The quantitative analysis of electroencephalographic activity (EEG) is a useful tool for the study of changes in brain electrical activity during cognitive and behavioral functions in several experimental conditions. Their recording and analysis are currently carried out primarily through the use of computer programs. This paper presents a computerized program (EEGbands) created for Windows operating systems using the Delphi language, and designed to analyze EEG signals and facilitate their quantitative exploration. EEGbands applies Rapid Fourier Transformation to the EEG signals of one or more groups of subjects to obtain absolute and relative power spectra. It also calculates both interhemispheric and intrahemispheric correlation and coherence spectra and, finally, applies parametrical statistical analysis to these spectral parameters calculated for wide frequency EEG bands. Unlike other programs, EEGbands is simple and inexpensive, and rapidly and precisely generates results files with the corresponding statistical significances. The efficacy and versatility of EEGbands allow it to be easily adapted to different experimental and clinical needs.
基金supported by the Auckland Medical Research Foundation,No.1117017(to CPU)
文摘Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research community with an opportunity to develop automated real-time identification techniques to detect the signs of hypoxic-ischemic-encephalopathy in larger electroencephalography/amplitude-integrated electroencephalography data sets more easily. This review details the recent achievements, performed by a number of prominent research groups across the world, in the automatic identification and classification of hypoxic-ischemic epileptiform neonatal seizures using advanced signal processing and machine learning techniques. This review also addresses the clinical challenges that current automated techniques face in order to be fully utilized by clinicians, and highlights the importance of upgrading the current clinical bedside sampling frequencies to higher sampling rates in order to provide better hypoxic-ischemic biomarker detection frameworks. Additionally, the article highlights that current clinical automated epileptiform detection strategies for human neonates have been only concerned with seizure detection after the therapeutic latent phase of injury. Whereas recent animal studies have demonstrated that the latent phase of opportunity is critically important for early diagnosis of hypoxic-ischemic-encephalopathy electroencephalography biomarkers and although difficult, detection strategies could utilize biomarkers in the latent phase to also predict the onset of future seizures.
基金Project supported by the Xuzhou Key Research and Development Program (Social Development) (Grant No. KC21304)the National Natural Science Foundation of China (Grant No. 61876186)。
文摘Electroencephalogram(EEG) signals contain important information about the regulation of brain system. Thus, automatic detection of epilepsy by analyzing the characteristics obtained from EEG signals has important research implications in the field of clinical medicine. In this paper, the horizontal visibility graph(HVG) algorithm is used to map multifractal EEG signals into complex networks. Then, we study the structure of the networks and explore the nonlinear dynamics properties of the EEG signals inherited from these networks. In order to better describe complex brain behaviors, we use the angle between two connected nodes as the edge weight of the network and construct the weighted horizontal visibility graph(WHVG). In our studies, fractality and multifractality of WHVG are innovatively used to analyze the structure of related networks. However, these methods only analyze the reconstructed dynamical system in general characterizations,they are not sufficient to describe the complex behavior and cannot provide a comprehensive picture of the system. To this effect, we propose an improved multiscale multifractal analysis(MMA) for network, which extends the description of the network dynamics features by focusing on the relationship between the multifractality and the measured scale-free intervals.Furthermore, neural networks are applied to train the above-mentioned parameters for the classification and identification of three kinds of EEG signals, i.e., health, interictal phase, and ictal phase. By evaluating our experimental results, the classification accuracy is 99.0%, reflecting the effectiveness of the WHVG algorithm in extracting the potential dynamic characteristics of EEG signals.
文摘The assessment of emotions with fractal dimensions of EEG signals has been attempted before, but the quantification of the intensity and duration of sudden and short emotions remains a challenge. This paper suggests a method for this purpose, by using a new fractal dimension algorithm and by adjusting the amplitude of the EEG signal in order to obtain maximal separation of high and low fractal dimensions. The emotion was induced by embedding a scary image at 20 seconds in landscape videos of 60 seconds length. The new method did not only detect the onset of the emotion correctly, but also revealed its duration and intensity. The intensity is based on the magnitude and impulse of the fractal dimension signal. It is also shown that Higuchi’s method does not always detect emotion spikes correctly;on the contrary, the region of the expected emotional response can be represented by fractal dimensions smaller than the rest of the signal, whereas the new method directly reveals distinct spikes. The duration of these spikes was 10 - 11 seconds. The magnitude of these spikes varied across the EEG channels. The build-up and cool-down of the emotions can occur with steep and flat gradients.
文摘In this paper we propose an efcient process of physiological artifact elimination methodology from brain waves(BW),which are also commonly known as electroencephalogram(EEG)signal.In a clinical environment during the acquisition of BW several artifacts contaminates the actual BW component.This leads to inaccurate and ambiguous diagnosis.As the statistical nature of the EEG signal is more non-stationery,adaptive ltering is the more promising method for the process of artifact elimination.In clinical conditions,the conventional adaptive techniques require many numbers of computational operations and leads to data samples overlapping and instability of the algorithm used.This causes delay in diagnosis and decision making.To overcome this problem in our work we propose to set a threshold value to diminish the problem of round off error.The resultant adaptive algorithm based on this strategy is Non-linear Least mean square(NL2MS)algorithm.Again,to improve this algorithm in terms of ltering capability we perform data normalization,using this algorithm several hybrid versions are developed to improve ltering and reduce computational operations.Using the method,a new signal enhancement unit(SEU)is realized and performance of various hybrid versions of algorithms examined using real EEG signals recorded from the subject.The ability of the proposed schemes is measured in terms of convergence,enhancement and multiplications required.Among various SEUs,the MCN2L 2MS algorithm achieves 14.6734,12.8732,10.9257,15.7790 dB during the artifact removal of RA,EMG,CSA and EBA components with only two multiplications.Hence,this algorithm seems to be better candidate for artifact elimination.
基金supported in part by the Fundamental Research Funds for the Central Universities(xcxjh20210104).
文摘With the development of human-computer interaction technology,brain-computer interface(BCI)has been widely used in medical,entertainment,military,and other fields.Imagined speech is the latest paradigm of BCI and represents the mental process of imagining a word without making a sound or making clear facial movements.Imagined speech allows patients with physical disabilities to communicate with the outside world and use smart devices through imagination.Imagined speech can meet the needs of more complex manipulative tasks considering its more intuitive features.This study proposes a classification method of imagined speech Electroencephalogram(EEG)signals with discrete wavelet transform(DWT)and support vector machine(SVM).An open dataset that consists of 15 subjects imagining speaking six different words,namely,up,down,left,right,backward,and forward,is used.The objective is to improve the classification accuracy of imagined speech BCI system.The features of EEG signals are first extracted by DWT,and the imagined words are clas-sified by SVM with the above features.Experimental results show that the proposed method achieves an average accuracy of 61.69%,which is better than those of existing methods for classifying imagined speech tasks.
文摘This special issue of The Journal of Biomedical Research features novel studies on epileptic seizure detection and prediction based on advanced EEG signal processing and machine learning algorithms.The articles selected present important findings including new experimental results and theoretical studies.
文摘The term Epilepsy refers to a most commonly occurring brain disorder after a migraine.Early identification of incoming seizures significantly impacts the lives of people with Epilepsy.Automated detection of epileptic seizures(ES)has dramatically improved the life quality of the patients.Recent Electroencephalogram(EEG)related seizure detection mechanisms encountered several difficulties in real-time.The EEGs are the non-stationary signal,and seizure patternswould changewith patients and recording sessions.Further,EEG data were disposed to wide noise varieties that adversely moved the recognition accuracy of ESs.Artificial intelligence(AI)methods in the domain of ES analysis use traditional deep learning(DL),and machine learning(ML)approaches.This article introduces an Oppositional Aquila Optimizer-based Feature Selection with Deep Belief Network for Epileptic Seizure Detection(OAOFS-DBNECD)technique using EEG signals.The primary aim of the presented OAOFS-DBNECD system is to categorize and classify the presence of ESs.The suggested OAOFS-DBNECD technique transforms the EEG signals into.csv format at the initial stage.Next,the OAOFS technique selects an optimal subset of features using the preprocessed data.For seizure classification,the presented OAOFS-DBNECD technique applies Artificial Ecosystem Optimizer(AEO)with a deep belief network(DBN)model.An extensive range of simulations was performed on the benchmark dataset to ensure the enhanced performance of the presented OAOFS-DBNECD algorithm.The comparison study shows the significant outcomes of the OAOFS-DBNECD approach over other methodologies.In addition,the result of the suggested approach has been evaluated using the CHB-MIT database,and the findings demonstrate accuracy of 97.81%.These findings confirmed the best seizure categorization accuracy on the EEG data considered.
基金supported in part by the National Natural Science Foundation of China(Grant No.82072019)the Shenzhen Basic Research Program(JCYJ20210324130209023)of Shenzhen Science and Technology Innovation Committee+6 种基金the Shenzhen-Hong Kong-Macao S&T Program(Category C)(SGDX20201103095002019)the Natural Science Foundation of Jiangsu Province(No.BK20201441)the Provincial and Ministry Co-constructed Project of Henan Province Medical Science and Technology Research(SBGJ202103038 and SBGJ202102056)the Henan Province Key R&D and Promotion Project(Science and Technology Research)(222102310015)the Natural Science Foundation of Henan Province(222300420575)the Henan Province Science and Technology Research(222102310322)The Jiangsu Students’Innovation and Entrepreneurship Training Program(202110304096Y).
文摘Epilepsy is a central nervous system disorder in which brain activity becomes abnormal.Electroencephalogram(EEG)signals,as recordings of brain activity,have been widely used for epilepsy recognition.To study epilep-tic EEG signals and develop artificial intelligence(AI)-assist recognition,a multi-view transfer learning(MVTL-LSR)algorithm based on least squares regression is proposed in this study.Compared with most existing multi-view transfer learning algorithms,MVTL-LSR has two merits:(1)Since traditional transfer learning algorithms leverage knowledge from different sources,which poses a significant risk to data privacy.Therefore,we develop a knowledge transfer mechanism that can protect the security of source domain data while guaranteeing performance.(2)When utilizing multi-view data,we embed view weighting and manifold regularization into the transfer framework to measure the views’strengths and weaknesses and improve generalization ability.In the experimental studies,12 different simulated multi-view&transfer scenarios are constructed from epileptic EEG signals licensed and provided by the Uni-versity of Bonn,Germany.Extensive experimental results show that MVTL-LSR outperforms baselines.The source code will be available on https://github.com/didid5/MVTL-LSR.
基金Supported by the National Natural Science Foundation of China(No.51775325)National Key R&D Program of China(No.2018YFB1309200)the Young Eastern Scholars Program of Shanghai(No.QD2016033).
文摘At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels will result in a large amount of calculation.Components irrelevant to the task will interfere with the required features,which is not conducive to the real-time processing of EEG data.Using too few channels will result in the loss of useful information and low robustness.A method of selecting data channels for motion imagination is proposed based on the time-frequency cross mutual information(TFCMI).This method determines the required data channels in a targeted manner,uses the common spatial pattern mode for feature extraction,and uses support vector ma-chine(SVM)for feature classification.An experiment is designed to collect motor imagery EEG da-ta with four experimenters and adds brain-computer interface(BCI)Competition IV public motor imagery experimental data to verify the method.The data demonstrates that compared with the meth-od of selecting too many or too few data channels,the time-frequency cross mutual information meth-od using motor imagery can improve the recognition accuracy and reduce the amount of calculation.
基金supported by the National Natural Science Foundation of China(Grant No.42075007)the Open Grants of the State Key Laboratory of Severe Weather(No.2021LASW-B19).
文摘Brain-Computer Interface(BCI)technology is a way for humans to explore the mysteries of the brain and has applications in many areas of real life.People use this technology to capture brain waves and analyze the electroencephalograph(EEG)signal for feature extraction.Take the medical field as an example,epilepsy disease is threatening human health every moment.We propose a convolutional neural network SECNN-LSTM framework based on the attention mechanism can automatically perform feature extraction and analysis on the collected EEG signals of patients to complete the prediction of epilepsy diseases,overcoming the problem that the disease requires long time EEG monitoring and analysis by manual,which is a large workload and relatively subjective,and improving the prediction accuracy of epilepsy diseases by adding the attention mechanism module.Through experimental tests,the algorithm of SECNN-LSTM can effectively predict the EEG signal of epilepsy disease,and the correct recognition rate is improved.The experiment has some reference value for the subsequent research of EEG signals in other fields in deep learning.
文摘The utilization of quantum states for the representation of information and the advances in machine learning is considered as an efficient way of modeling the working of complex systems.The states of mind or judgment outcomes are highly complex phenomena that happen inside the human body.Decoding these states is significant for improving the quality of technology and providing an impetus to scientific research aimed at understanding the functioning of the human mind.One of the key advantages of quantum wave-functions over conventional classical models is the existence of configurable hidden variables,which provide more data density due to its exponential state-space growth.These hidden variables correspond to the amplitudes of each probable state of the system and allow for the modeling of various intricate aspects of measurable and observable physical quantities.This makes the quantum wave-functions powerful and felicitous to model cognitive states of the human mind,as it inherits the ability to efficiently couple the current context with past experiences temporally and spatially to approach an appropriate future cognitive state.This paper implements and compares some techniques like Variational Quantum Classifiers(VQC),quantum annealing classifiers,and hybrid quantum-classical neural networks,to harness the power of quantum computing for processing cognitive states of the mind by making use of EEG data.It also introduces a novel pipeline by logically combining some of the aforementioned techniques,to predict future cognitive responses.The preliminary results of these approaches are presented and are very encouraging with upto 61.53%validation accuracy.
基金International Joint Research Program from the Ministry of Science and Technology of Chinagrant number:20070667+1 种基金Education Commission of Chongqing of Chinagrant number:KJ081209
文摘The aim of this study is to identify the functions and states of the brains according to the values of the complexity measure of the EEG signals. The EEG signals of 30 normal samples and 30 patient samples are collected. Based on the preprocessing for the raw data, a computational program for complexity measure is compiled and the complexity measures of all samples are calculated. The mean value and standard error of complexity measure of control group is as 0.33 and 0.10, and the normal group is as 0.53 and 0.08. When the confidence degree is 0.05, the confidence interval of the normal population mean of complexity measures for the control group is (0.2871,0.3652), and (0.4944,0.5552) for the normal group. The statistic results show that the normal samples and patient samples can be clearly distinguished by the value of measures. In clinical medicine, the results can be used to be a reference to evaluate the function or state, to diagnose disease, to monitor the rehabilitation progress of the brain.