期刊文献+
共找到1,452篇文章
< 1 2 73 >
每页显示 20 50 100
Epileptic seizure detection using EEG signals and extreme gradient boosting 被引量:2
1
作者 Paul Vanabelle Pierre De Handschutter +2 位作者 Riem El Tahry Mohammed Benjelloun Mohamed Boukhebouze 《The Journal of Biomedical Research》 CAS CSCD 2020年第3期228-239,共12页
The problem of automated seizure detection is treated using clinical electroencephalograms(EEG) and machine learning algorithms on the Temple University Hospital EEG Seizure Corpus(TUSZ).Performances on this complex d... The problem of automated seizure detection is treated using clinical electroencephalograms(EEG) and machine learning algorithms on the Temple University Hospital EEG Seizure Corpus(TUSZ).Performances on this complex data set are still not encountering expectations.The purpose of this work is to determine to what extent the use of larger amount of data can help to improve the performances.Two methods are explored:a standard partitioning on a recent and larger version of the TUSZ,and a leave-one-out approach used to increase the amount of data for the training set.XGBoost,a fast implementation of the gradient boosting classifier,is the ideal algorithm for these tasks.The performances obtained are in the range of what is reported until now in the literature with deep learning models.We give interpretation to our results by identifying the most relevant features and analyzing performances by seizure types.We show that generalized seizures tend to be far better predicted than focal ones.We also notice that some EEG channels and features are more important than others to distinguish seizure from background. 展开更多
关键词 epileptic seizure electroencephalograms Temple University Hospital eeg Seizure Corpus machine learning XGBoost
下载PDF
Detection of EEG signals in normal and epileptic seizures with multiscale multifractal analysis approach via weighted horizontal visibility graph 被引量:1
2
作者 马璐 任彦霖 +2 位作者 何爱军 程德强 杨小冬 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期401-407,共7页
Electroencephalogram(EEG) signals contain important information about the regulation of brain system. Thus, automatic detection of epilepsy by analyzing the characteristics obtained from EEG signals has important rese... Electroencephalogram(EEG) signals contain important information about the regulation of brain system. Thus, automatic detection of epilepsy by analyzing the characteristics obtained from EEG signals has important research implications in the field of clinical medicine. In this paper, the horizontal visibility graph(HVG) algorithm is used to map multifractal EEG signals into complex networks. Then, we study the structure of the networks and explore the nonlinear dynamics properties of the EEG signals inherited from these networks. In order to better describe complex brain behaviors, we use the angle between two connected nodes as the edge weight of the network and construct the weighted horizontal visibility graph(WHVG). In our studies, fractality and multifractality of WHVG are innovatively used to analyze the structure of related networks. However, these methods only analyze the reconstructed dynamical system in general characterizations,they are not sufficient to describe the complex behavior and cannot provide a comprehensive picture of the system. To this effect, we propose an improved multiscale multifractal analysis(MMA) for network, which extends the description of the network dynamics features by focusing on the relationship between the multifractality and the measured scale-free intervals.Furthermore, neural networks are applied to train the above-mentioned parameters for the classification and identification of three kinds of EEG signals, i.e., health, interictal phase, and ictal phase. By evaluating our experimental results, the classification accuracy is 99.0%, reflecting the effectiveness of the WHVG algorithm in extracting the potential dynamic characteristics of EEG signals. 展开更多
关键词 EPILEPSY eeg signal horizontal visibility graph complex network
下载PDF
A Method for Quantifying the Emotional Intensity and Duration of a Startle Reaction with Customized Fractal Dimensions of EEG Signals 被引量:1
3
作者 Franz Konstantin Fuss 《Applied Mathematics》 2016年第4期355-364,共10页
The assessment of emotions with fractal dimensions of EEG signals has been attempted before, but the quantification of the intensity and duration of sudden and short emotions remains a challenge. This paper suggests a... The assessment of emotions with fractal dimensions of EEG signals has been attempted before, but the quantification of the intensity and duration of sudden and short emotions remains a challenge. This paper suggests a method for this purpose, by using a new fractal dimension algorithm and by adjusting the amplitude of the EEG signal in order to obtain maximal separation of high and low fractal dimensions. The emotion was induced by embedding a scary image at 20 seconds in landscape videos of 60 seconds length. The new method did not only detect the onset of the emotion correctly, but also revealed its duration and intensity. The intensity is based on the magnitude and impulse of the fractal dimension signal. It is also shown that Higuchi’s method does not always detect emotion spikes correctly;on the contrary, the region of the expected emotional response can be represented by fractal dimensions smaller than the rest of the signal, whereas the new method directly reveals distinct spikes. The duration of these spikes was 10 - 11 seconds. The magnitude of these spikes varied across the EEG channels. The build-up and cool-down of the emotions can occur with steep and flat gradients. 展开更多
关键词 eeg signal Startle Reaction EMOTION Fractal Dimension Emotional Intensity
下载PDF
Classification of Imagined Speech EEG Signals with DWT and SVM 被引量:4
4
作者 ZHANG Lingwei ZHOU Zhengdong +3 位作者 XU Yunfei JI Wentao WANG Jiawen SONG Zefeng 《Instrumentation》 2022年第2期56-63,共8页
With the development of human-computer interaction technology,brain-computer interface(BCI)has been widely used in medical,entertainment,military,and other fields.Imagined speech is the latest paradigm of BCI and repr... With the development of human-computer interaction technology,brain-computer interface(BCI)has been widely used in medical,entertainment,military,and other fields.Imagined speech is the latest paradigm of BCI and represents the mental process of imagining a word without making a sound or making clear facial movements.Imagined speech allows patients with physical disabilities to communicate with the outside world and use smart devices through imagination.Imagined speech can meet the needs of more complex manipulative tasks considering its more intuitive features.This study proposes a classification method of imagined speech Electroencephalogram(EEG)signals with discrete wavelet transform(DWT)and support vector machine(SVM).An open dataset that consists of 15 subjects imagining speaking six different words,namely,up,down,left,right,backward,and forward,is used.The objective is to improve the classification accuracy of imagined speech BCI system.The features of EEG signals are first extracted by DWT,and the imagined words are clas-sified by SVM with the above features.Experimental results show that the proposed method achieves an average accuracy of 61.69%,which is better than those of existing methods for classifying imagined speech tasks. 展开更多
关键词 Brain-computer Interface(BCI) eeg Imagined Speech Discrete Wavelet Transform(DWT) signal Processing Support Vector Machine(SVM)
下载PDF
EEGbands: A Computer Program to Statistically Analyze Parameters of Electroencephalographic Signals
5
作者 Miguel Angel Guevara Araceli Sanz-Martin Marisela Hernández-González 《Journal of Behavioral and Brain Science》 2014年第7期308-324,共17页
The quantitative analysis of electroencephalographic activity (EEG) is a useful tool for the study of changes in brain electrical activity during cognitive and behavioral functions in several experimental conditions. ... The quantitative analysis of electroencephalographic activity (EEG) is a useful tool for the study of changes in brain electrical activity during cognitive and behavioral functions in several experimental conditions. Their recording and analysis are currently carried out primarily through the use of computer programs. This paper presents a computerized program (EEGbands) created for Windows operating systems using the Delphi language, and designed to analyze EEG signals and facilitate their quantitative exploration. EEGbands applies Rapid Fourier Transformation to the EEG signals of one or more groups of subjects to obtain absolute and relative power spectra. It also calculates both interhemispheric and intrahemispheric correlation and coherence spectra and, finally, applies parametrical statistical analysis to these spectral parameters calculated for wide frequency EEG bands. Unlike other programs, EEGbands is simple and inexpensive, and rapidly and precisely generates results files with the corresponding statistical significances. The efficacy and versatility of EEGbands allow it to be easily adapted to different experimental and clinical needs. 展开更多
关键词 eeg Correlation eeg COHERENCE RELATIVE POWER ABSOLUTE POWER eeg Software eeg signal Analysis
下载PDF
Feature Selection with Deep Belief Network for Epileptic Seizure Detection on EEG Signals
6
作者 Srikanth Cherukuvada R.Kayalvizhi 《Computers, Materials & Continua》 SCIE EI 2023年第5期4101-4118,共18页
The term Epilepsy refers to a most commonly occurring brain disorder after a migraine.Early identification of incoming seizures significantly impacts the lives of people with Epilepsy.Automated detection of epileptic ... The term Epilepsy refers to a most commonly occurring brain disorder after a migraine.Early identification of incoming seizures significantly impacts the lives of people with Epilepsy.Automated detection of epileptic seizures(ES)has dramatically improved the life quality of the patients.Recent Electroencephalogram(EEG)related seizure detection mechanisms encountered several difficulties in real-time.The EEGs are the non-stationary signal,and seizure patternswould changewith patients and recording sessions.Further,EEG data were disposed to wide noise varieties that adversely moved the recognition accuracy of ESs.Artificial intelligence(AI)methods in the domain of ES analysis use traditional deep learning(DL),and machine learning(ML)approaches.This article introduces an Oppositional Aquila Optimizer-based Feature Selection with Deep Belief Network for Epileptic Seizure Detection(OAOFS-DBNECD)technique using EEG signals.The primary aim of the presented OAOFS-DBNECD system is to categorize and classify the presence of ESs.The suggested OAOFS-DBNECD technique transforms the EEG signals into.csv format at the initial stage.Next,the OAOFS technique selects an optimal subset of features using the preprocessed data.For seizure classification,the presented OAOFS-DBNECD technique applies Artificial Ecosystem Optimizer(AEO)with a deep belief network(DBN)model.An extensive range of simulations was performed on the benchmark dataset to ensure the enhanced performance of the presented OAOFS-DBNECD algorithm.The comparison study shows the significant outcomes of the OAOFS-DBNECD approach over other methodologies.In addition,the result of the suggested approach has been evaluated using the CHB-MIT database,and the findings demonstrate accuracy of 97.81%.These findings confirmed the best seizure categorization accuracy on the EEG data considered. 展开更多
关键词 Seizure detection eeg signals machine learning deep learning feature selection
下载PDF
Multi-View & Transfer Learning for Epilepsy Recognition Based on EEG Signals
7
作者 Jiali Wang Bing Li +7 位作者 Chengyu Qiu Xinyun Zhang Yuting Cheng Peihua Wang Ta Zhou Hong Ge Yuanpeng Zhang Jing Cai 《Computers, Materials & Continua》 SCIE EI 2023年第6期4843-4866,共24页
Epilepsy is a central nervous system disorder in which brain activity becomes abnormal.Electroencephalogram(EEG)signals,as recordings of brain activity,have been widely used for epilepsy recognition.To study epilep-ti... Epilepsy is a central nervous system disorder in which brain activity becomes abnormal.Electroencephalogram(EEG)signals,as recordings of brain activity,have been widely used for epilepsy recognition.To study epilep-tic EEG signals and develop artificial intelligence(AI)-assist recognition,a multi-view transfer learning(MVTL-LSR)algorithm based on least squares regression is proposed in this study.Compared with most existing multi-view transfer learning algorithms,MVTL-LSR has two merits:(1)Since traditional transfer learning algorithms leverage knowledge from different sources,which poses a significant risk to data privacy.Therefore,we develop a knowledge transfer mechanism that can protect the security of source domain data while guaranteeing performance.(2)When utilizing multi-view data,we embed view weighting and manifold regularization into the transfer framework to measure the views’strengths and weaknesses and improve generalization ability.In the experimental studies,12 different simulated multi-view&transfer scenarios are constructed from epileptic EEG signals licensed and provided by the Uni-versity of Bonn,Germany.Extensive experimental results show that MVTL-LSR outperforms baselines.The source code will be available on https://github.com/didid5/MVTL-LSR. 展开更多
关键词 Multi-view learning transfer learning least squares regression EPILEPSY eeg signals
下载PDF
Quantum Computational Techniques for Prediction of Cognitive State of Human Mind from EEG Signals
8
作者 Seth Aishwarya Vaishnav Abeer +1 位作者 Babu B.Sathish K.N.Subramanya 《Journal of Quantum Computing》 2020年第4期157-170,共14页
The utilization of quantum states for the representation of information and the advances in machine learning is considered as an efficient way of modeling the working of complex systems.The states of mind or judgment ... The utilization of quantum states for the representation of information and the advances in machine learning is considered as an efficient way of modeling the working of complex systems.The states of mind or judgment outcomes are highly complex phenomena that happen inside the human body.Decoding these states is significant for improving the quality of technology and providing an impetus to scientific research aimed at understanding the functioning of the human mind.One of the key advantages of quantum wave-functions over conventional classical models is the existence of configurable hidden variables,which provide more data density due to its exponential state-space growth.These hidden variables correspond to the amplitudes of each probable state of the system and allow for the modeling of various intricate aspects of measurable and observable physical quantities.This makes the quantum wave-functions powerful and felicitous to model cognitive states of the human mind,as it inherits the ability to efficiently couple the current context with past experiences temporally and spatially to approach an appropriate future cognitive state.This paper implements and compares some techniques like Variational Quantum Classifiers(VQC),quantum annealing classifiers,and hybrid quantum-classical neural networks,to harness the power of quantum computing for processing cognitive states of the mind by making use of EEG data.It also introduces a novel pipeline by logically combining some of the aforementioned techniques,to predict future cognitive responses.The preliminary results of these approaches are presented and are very encouraging with upto 61.53%validation accuracy. 展开更多
关键词 Cognitive state of mind hybrid quantum-classical neural network variational quantum classifier quantum annealing eeg signals
下载PDF
Phase Spectral Analysis of EEG Signals
9
作者 YOURong-yi CHENZhong 《Chinese Journal of Biomedical Engineering(English Edition)》 2004年第3期126-133,共8页
A new method of phase spectral analysis of EEG is proposed for the comparative analysis of phase spectra between normal EEG and epileptic EEG signals based on the wavelet decomposition technique. By using multiscale w... A new method of phase spectral analysis of EEG is proposed for the comparative analysis of phase spectra between normal EEG and epileptic EEG signals based on the wavelet decomposition technique. By using multiscale wavelet decomposition,the original EEGs are mapped to an orthogonal wavelet space,such that the variations of phase can be observed at multiscale. It is found that the phase (and phase difference) spectra of normal EEGs are distinct from that of epileptic EEGs. That is the variations of phase (and phase difference) of normal EEGs have a distinct periodic pattern with the electrical activity proceeds in the brain,but do not the epileptic EEGs. For epileptic EEGs,only at those transient points,the phase variations are obvious. In order to verify these results with the observational data,the phase variations of EEGs in principal component space are observed and found that,the features of phase spectra is in correspondence with that the wavelet space. These results make it possible to view the behavior of EEG rhythms as a dynamic spectrum. 展开更多
关键词 Phase spectral analysis electroencephalogram (eeg) Wavelet decomposition Principal component analysis
下载PDF
Comparative Analysis of EEG Signals Based on Complexity Measure
10
作者 ZHU Jia-fu HE Wei 《Chinese Journal of Biomedical Engineering(English Edition)》 2009年第4期144-148,170,共6页
The aim of this study is to identify the functions and states of the brains according to the values of the complexity measure of the EEG signals. The EEG signals of 30 normal samples and 30 patient samples are collect... The aim of this study is to identify the functions and states of the brains according to the values of the complexity measure of the EEG signals. The EEG signals of 30 normal samples and 30 patient samples are collected. Based on the preprocessing for the raw data, a computational program for complexity measure is compiled and the complexity measures of all samples are calculated. The mean value and standard error of complexity measure of control group is as 0.33 and 0.10, and the normal group is as 0.53 and 0.08. When the confidence degree is 0.05, the confidence interval of the normal population mean of complexity measures for the control group is (0.2871,0.3652), and (0.4944,0.5552) for the normal group. The statistic results show that the normal samples and patient samples can be clearly distinguished by the value of measures. In clinical medicine, the results can be used to be a reference to evaluate the function or state, to diagnose disease, to monitor the rehabilitation progress of the brain. 展开更多
关键词 eeg signal nonlinear dynamics Kolmogorov complexity comparative analysis
下载PDF
注意力残差网络结合LSTM的EEG情绪识别研究
11
作者 张琪 熊馨 +2 位作者 周建华 宗静 周雕 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期570-579,共10页
基于脑电信号的情感识别已成为情感计算和人机交互领域的一个重要挑战。由于脑电信号中具有时间、空间、频率维度信息,采用结合注意力残差网络与长短时记忆网络的混合网络模型(ECA-ResNet-LSTM)对脑电信号进行特征提取与识别。首先,提... 基于脑电信号的情感识别已成为情感计算和人机交互领域的一个重要挑战。由于脑电信号中具有时间、空间、频率维度信息,采用结合注意力残差网络与长短时记忆网络的混合网络模型(ECA-ResNet-LSTM)对脑电信号进行特征提取与识别。首先,提取时域分段后脑电信号不同频带微分熵特征,将从不同通道中提取出的微分熵特征转化为四维特征矩阵;然后通过注意力残差网络(ECA-ResNet)提取脑电信号中空间与频率信息,并引入注意力机制重新分配更相关频带信息的权重,长短时记忆网络(LSTM)从ECA-ResNet的输出中提取时间相关信息。实验结果表明:在DEAP数据集唤醒维和效价维二分类准确率分别达到了97.15%和96.13%,唤醒-效价维四分类准确率达到了95.96%,SEED数据集积极-中性-消极三分类准确率达到96.64%,相比现有主流情感识别模型取得了显著提升。 展开更多
关键词 脑电信号 情感识别 微分熵 注意力机制 残差网络
下载PDF
基于有效注意力和GAN结合的脑卒中EEG增强算法 被引量:1
12
作者 王夙喆 张雪英 +2 位作者 陈晓玉 李凤莲 吴泽林 《计算机工程》 CAS CSCD 北大核心 2024年第8期336-344,共9页
在基于脑电的卒中分类诊断任务中,以卷积神经网络为基础的深度模型得到广泛应用,但由于卒中类别病患样本数量少,导致数据集类别不平衡,降低了分类精度。现有的少数类数据增强方法大多采用生成对抗网络(GAN),生成效果一般,虽然可通过引... 在基于脑电的卒中分类诊断任务中,以卷积神经网络为基础的深度模型得到广泛应用,但由于卒中类别病患样本数量少,导致数据集类别不平衡,降低了分类精度。现有的少数类数据增强方法大多采用生成对抗网络(GAN),生成效果一般,虽然可通过引入缩放点乘注意力改善样本生成质量,但存储及运算代价往往较大。针对此问题,构建一种基于线性有效注意力的渐进式数据增强算法LESA-CGAN。首先,算法采用双层自编码条件生成对抗网络架构,分别进行脑电标签特征提取及脑电样本生成,并使生成过程逐层精细化;其次,通过在编码部分引入线性有效自注意力(LESA)模块,加强脑电的标签隐层特征提取,并降低网络整体的运算复杂度。消融与对比实验结果表明,在合理的编码层数与生成数据比例下,LESA-CGAN与其他基准方法相比计算资源占用较少,且在样本生成质量指标上实现了10%的性能提升,各频段生成的脑电特征样本均更加自然,同时将病患分类的准确率和敏感度提高到了98.85%和98.79%。 展开更多
关键词 脑卒中 脑电 生成对抗网络 自注意力机制 线性有效自注意力
下载PDF
Adaptive Signal Enhancement Unit for EEG Analysis in Remote Patient Care Monitoring Systems 被引量:1
13
作者 Ch.Srinivas K.Chandrabhushana Rao 《Computers, Materials & Continua》 SCIE EI 2021年第5期1801-1817,共17页
In this paper we propose an efcient process of physiological artifact elimination methodology from brain waves(BW),which are also commonly known as electroencephalogram(EEG)signal.In a clinical environment during the ... In this paper we propose an efcient process of physiological artifact elimination methodology from brain waves(BW),which are also commonly known as electroencephalogram(EEG)signal.In a clinical environment during the acquisition of BW several artifacts contaminates the actual BW component.This leads to inaccurate and ambiguous diagnosis.As the statistical nature of the EEG signal is more non-stationery,adaptive ltering is the more promising method for the process of artifact elimination.In clinical conditions,the conventional adaptive techniques require many numbers of computational operations and leads to data samples overlapping and instability of the algorithm used.This causes delay in diagnosis and decision making.To overcome this problem in our work we propose to set a threshold value to diminish the problem of round off error.The resultant adaptive algorithm based on this strategy is Non-linear Least mean square(NL2MS)algorithm.Again,to improve this algorithm in terms of ltering capability we perform data normalization,using this algorithm several hybrid versions are developed to improve ltering and reduce computational operations.Using the method,a new signal enhancement unit(SEU)is realized and performance of various hybrid versions of algorithms examined using real EEG signals recorded from the subject.The ability of the proposed schemes is measured in terms of convergence,enhancement and multiplications required.Among various SEUs,the MCN2L 2MS algorithm achieves 14.6734,12.8732,10.9257,15.7790 dB during the artifact removal of RA,EMG,CSA and EBA components with only two multiplications.Hence,this algorithm seems to be better candidate for artifact elimination. 展开更多
关键词 Adaptive algorithms ARTIFACTS brain waves clipped algorithms signal enhancement unit wireless eeg monitoring
下载PDF
THE EFFECT OF ACUPUNCTURING ACUPOINTS ON THE CHANGE OF ELECTROENCEPHALOGRAM (EEG) IN ENDOTOXIC SHOCKED RATS
14
作者 Huang Kunhou Rong Peijing +1 位作者 Zhang Xinyu Cai Hong, Institute of Acupuncture & Moxibustion, China Academy of Traditional Chinese Medicine, Beijing 100700, China 《World Journal of Acupuncture-Moxibustion》 1993年第3期42-47,共6页
In present work,EEG and BP were used as the indexes to observe the relationbetween the change of EEG and the change of BP in the endotoxic shocked rats。At maintainingshock for 1 hr,dysrhythmia of EEG appeared in 38/4... In present work,EEG and BP were used as the indexes to observe the relationbetween the change of EEG and the change of BP in the endotoxic shocked rats。At maintainingshock for 1 hr,dysrhythmia of EEG appeared in 38/46 cases.Simultaneously,there was a markeddrop in Bp,P【0.05.Following the shocked time prolonged,dysrhythmia was getting severe。AfterEA”Rengzhong"(n=14)or“Zusanli”(n=12),BP was significantly increased(P【0.05),anddysrhythmia of EEG showed clear improvement in most of the rats。There was a close relation be-tween the changes of EEG and BP,the change of EEG had a direct bearing on the change of BP. 展开更多
关键词 ENDOTOXIC shock electroencephalogram (eeg) DYSRHYTHMIA BLOOD pressure (BP)
下载PDF
Editorial commentary on special issue of Advances in EEG Signal Processing and Machine Learning for Epileptic Seizure Detection and Prediction
15
作者 Larbi Boubchir 《The Journal of Biomedical Research》 CAS CSCD 2020年第3期149-150,共2页
This special issue of The Journal of Biomedical Research features novel studies on epileptic seizure detection and prediction based on advanced EEG signal processing and machine learning algorithms.The articles select... This special issue of The Journal of Biomedical Research features novel studies on epileptic seizure detection and prediction based on advanced EEG signal processing and machine learning algorithms.The articles selected present important findings including new experimental results and theoretical studies. 展开更多
关键词 epileptic seizure electroencephalography(eeg) eeg signal processing machine learning feature extraction
下载PDF
Research on time-frequency cross mutual of motor imagination data based on multichannel EEG signal
16
作者 REN Bin PAN Yunjie 《High Technology Letters》 EI CAS 2022年第1期21-29,共9页
At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels w... At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels will result in a large amount of calculation.Components irrelevant to the task will interfere with the required features,which is not conducive to the real-time processing of EEG data.Using too few channels will result in the loss of useful information and low robustness.A method of selecting data channels for motion imagination is proposed based on the time-frequency cross mutual information(TFCMI).This method determines the required data channels in a targeted manner,uses the common spatial pattern mode for feature extraction,and uses support vector ma-chine(SVM)for feature classification.An experiment is designed to collect motor imagery EEG da-ta with four experimenters and adds brain-computer interface(BCI)Competition IV public motor imagery experimental data to verify the method.The data demonstrates that compared with the meth-od of selecting too many or too few data channels,the time-frequency cross mutual information meth-od using motor imagery can improve the recognition accuracy and reduce the amount of calculation. 展开更多
关键词 electroencephalogram(eeg)signal time-frequency cross mutual information(TFCMI) motion imaging common spatial pattern(CSP) support vector machine(SVM)
下载PDF
Performance comparison of three artificial neural network methods for classification of electroencephalograph signals of five mental tasks
17
作者 Vijay Khare Jayashree Santhosh +1 位作者 Sneh Anand Manvir Bhatia 《Journal of Biomedical Science and Engineering》 2010年第2期200-205,共6页
In this paper, performance of three classifiers for classification of five mental tasks were investigated. Wavelet Packet Transform (WPT) was used for feature extraction of the relevant frequency bands from raw Electr... In this paper, performance of three classifiers for classification of five mental tasks were investigated. Wavelet Packet Transform (WPT) was used for feature extraction of the relevant frequency bands from raw Electroencephalograph (EEG) signal. The three classifiers namely used were Multilayer Back propagation Neural Network, Support Vector Machine and Radial Basis Function Neural Network. In MLP-BP NN five training methods used were a) Gradient Descent Back Propagation b) Levenberg-Marquardt c) Resilient Back Propagation d) Conjugate Learning Gradient Back Propagation and e) Gradient Descent Back Propagation with movementum. 展开更多
关键词 electroencephalogram (eeg) Wavelet Packet Transform (WPT) Support Vector Machine (SVM) Radial Basis Function NEURAL NETWORK (RBFNN) Multilayer Back Propagation NEURAL NETWORK (MLP-BPNN) Brain Computer Interface (BCI)
下载PDF
Optimal Sparse Autoencoder Based Sleep Stage Classification Using Biomedical Signals
18
作者 Ashit Kumar Dutta Yasser Albagory +2 位作者 Manal Al Faraj Yasir A.M.Eltahir Abdul Rahaman Wahab Sait 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1517-1529,共13页
The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification M... The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification Model on Electroencephalography(EEG)Biomedical Signals,named OSAE-SSCEEG technique.The major intention of the OSAE-SSCEEG technique is tofind the sleep stage disorders using the EEG biomedical signals.The OSAE-SSCEEG technique primarily undergoes preprocessing using min-max data normalization approach.Moreover,the classification of sleep stages takes place using the Sparse Autoencoder with Smoothed Regularization(SAE-SR)with softmax(SM)approach.Finally,the parameter optimization of the SAE-SR technique is carried out by the use of Coyote Optimization Algorithm(COA)and it leads to boosted classification efficiency.In order to ensure the enhanced performance of the OSAE-SSCEEG technique,a wide ranging simulation analysis is performed and the obtained results demonstrate the betterment of the OSAE-SSCEEG tech-nique over the recent methods. 展开更多
关键词 Biomedical signals eeg sleep stage classification machine learning autoencoder softmax parameter tuning
下载PDF
Spectral Analysis and Validation of Parietal Signals for Different Arm Movements
19
作者 Umashankar Ganesan A.Vimala Juliet R.Amala Jenith Joshi 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2849-2863,共15页
Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique techniq... Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique technique to identify an ideal region of the human brain that generates signals responsible for muscular movements;perform statistical analysis to provide an absolute characterization of the signal and validate the obtained results using a prototype arm.This can enhance the practical implementation of these frequency extractions for future neuro-prosthetic applications and the characterization of neurological diseases like Parkinson’s disease(PD).To play out this handling method,electroencepha-logram(EEG)signals are gained while the subject is performing different wrist and elbow movements.Then,the frontal brain signals and just the parietal signals are separated from the obtained EEG signal by utilizing a band pass filter.Then,feature extraction is carried out using Fast Fourier Transform(FFT).Subse-quently,the extraction process is done by Daubechies(db4)and Haar wavelet(db1)in MATLAB and classified using the Levenberg-Marquardt Algorithm.The results of the frequency changes that occurred during various wrist move-ments in the parietal region are compared with the frequency changes that occurred in frontal EEG signals.This proposed algorithm also uses the deep learn-ing pattern analysis network to evaluate the matching sequence for each action that takes place.Maximum accuracy of 97.2%and maximum error range of 0.6684%are achieved during the analysis.Results of this research confirm that the Levenberg-Marquardt algorithm,along with the newly developed deep learn-ing hybrid PatternNet,provides a more accurate range of frequency changes than any other classifier used in previous works of literature.Based on the analysis,the peak-to-peak value is used to define the threshold for the prototype arm,which performs all the intended degrees of freedom(DOF),verifying the results.These results would aid the specialists in their decision-making by facilitating the ana-lysis and interpretation of brain signals in the field of neuroscience,specifically in tremor analysis in PD. 展开更多
关键词 Parietal eeg signals fast fourier transform Levenberg-Marquardt algorithm haar wavelet daubechies wavelet statistical analysis
下载PDF
抑郁症EEG诊断的类脑学习模型
20
作者 曾昊辰 胡滨 关治洪 《计算机工程与应用》 CSCD 北大核心 2024年第3期157-164,共8页
抑郁症是一种全球性精神疾病,传统诊断方法主要依靠量表与医生的主观评估,无法有效识别症状,甚至存在误诊的风险。基于生理信号的深度学习辅助诊断有望改善传统缺乏生理学依据的方法。然而,传统深度学习方法依赖巨大算力,且大多是端到... 抑郁症是一种全球性精神疾病,传统诊断方法主要依靠量表与医生的主观评估,无法有效识别症状,甚至存在误诊的风险。基于生理信号的深度学习辅助诊断有望改善传统缺乏生理学依据的方法。然而,传统深度学习方法依赖巨大算力,且大多是端到端的网络学习。这些学习方法也缺乏生理可解释性,限制了辅助诊断临床应用。提出一种用于抑郁症脑电图(electroencephalogram,EEG)诊断的类脑学习模型,在功能层面,构建脉冲神经网络对抑郁症与健康个体进行分类,精度超过97.5%,相比深度卷积方法,脉冲方法降低了能耗;在结构层面,利用复杂网络建立脑连接的空间拓扑并分析其图特征,找出了抑郁症个体潜在的脑功能连接异常机制。 展开更多
关键词 类脑学习 脉冲神经网络 复杂网络特征 抑郁症 脑电图
下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部