期刊文献+
共找到192篇文章
< 1 2 10 >
每页显示 20 50 100
Ultralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorption
1
作者 Luo Kong Sihan Luo +2 位作者 Shuyu Zhang Guiqin Zhang Yi Liang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期570-580,共11页
For electromagnetic wave-absorbing materials,maximizing absorption at a specific frequency has been constantly achieved,but enhancing the absorption properties in the entire band remains a challenge.In this work,a 3D ... For electromagnetic wave-absorbing materials,maximizing absorption at a specific frequency has been constantly achieved,but enhancing the absorption properties in the entire band remains a challenge.In this work,a 3D porous pyrolytic carbon(PyC)foam matrix was synthesized by a template method.Amorphous carbon nanotubes(CNTs)were then in-situ grown on the matrix surface to obtain ultralight CNTs/Py C foam.These in-situ grown amorphous CNTs were distributed uniformly and controlled by the catalytic growth time and can enhance the interface polarization and conduction loss of composites.When the electromagnetic wave enters the internal holes,the electromagnetic energy can be completely attenuated under the combined action of polarization,conductivity loss,and multiple reflections.The ultralight CNTs/Py C foam had a density of 22.0 mg·cm^(-3)and a reflection coefficient lower than-13.3 d B in the whole X-band(8.2-12.4 GHz),which is better than the conventional standard of effective absorption bandwidth(≤-10 dB).The results provide ideas for researching ultralight and strong electromagnetic wave absorbing materials in the X-band. 展开更多
关键词 ultralight carbon foam amorphous carbon nanotubes broadband electromagnetic absorption
下载PDF
Electromagnetic absorption properties of flowerlike cobalt composites at microwave frequencies
2
作者 刘涛 周佩珩 +1 位作者 梁迪飞 邓龙江 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期43-46,共4页
In this work,we report the electromagnetic absorption(EMA) properties of composites consisting of micrometersized cobalt with flowerlike architecture synthesized by a facile hydrothermal reduction method.Compared wi... In this work,we report the electromagnetic absorption(EMA) properties of composites consisting of micrometersized cobalt with flowerlike architecture synthesized by a facile hydrothermal reduction method.Compared with the conventional spherical Co-paraffin composites,the flowerlike Co-paraffin composites are favorable with respect to EMA performance in the low frequency region,ascribing interfacial polarization loss and Ohmic loss to the improvement in the impedance match. 展开更多
关键词 electromagnetic absorption flowerlike cobalt composites interracial polarization loss Ohmic loss
下载PDF
Lotus Leaf‑Derived Gradient Hierarchical Porous C/MoS2 Morphology Genetic Composites with Wideband and Tunable Electromagnetic Absorption Performance 被引量:24
3
作者 Fei Pan Zhicheng Liu +4 位作者 Baiwen Deng Yanyan Dong Xiaojie Zhu Chuang Huang Wei Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期22-38,共17页
Inspired by the nature,lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites(GHPCM)were successfully fabricated through an in situ strategy.The biological microstructure of lotus leaf wa... Inspired by the nature,lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites(GHPCM)were successfully fabricated through an in situ strategy.The biological microstructure of lotus leaf was well preserved after treatment.Different pores with gradient pore sizes ranging from 300 to 5μm were hierarchically distributed in the composites.In addition,the surface states of lotus leaf resulted in the Janus-like morphologies of MoS2.The GHPCM exhibit excellent electromagnetic wave absorption performance,with the minimum reflection loss of−50.1 dB at a thickness of 2.4 mm and the maximum effective bandwidth of 6.0 GHz at a thickness of 2.2 mm.The outstanding performance could be attributed to the synergy of conductive loss,polarization loss,and impedance matching.In particularly,we provided a brand-new dielectric sum-quotient model to analyze the electromagnetic performance of the non-magnetic material system.It suggests that the specific sum and quotient of permittivity are the key to keep reflection loss below−10 dB within a certain frequency range.Furthermore,based on the concept of material genetic engineering,the dielectric constant could be taken into account to seek for suitable materials with designable electromagnetic absorption performance. 展开更多
关键词 Morphology genetic materials Lotus leaf electromagnetic wave absorption Gradient hierarchical porous structure Dielectric sum-quotient model
下载PDF
Sandwich-Like Fe&TiO2@C Nanocomposites Derived from MXene/Fe-MOFs Hybrids for Electromagnetic Absorption 被引量:23
4
作者 Baiwen Deng Zhen Xiang +3 位作者 Juan Xiong Zhicheng Liu Lunzhou Yu Wei Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第4期121-136,共16页
Electromagnetic pollution has been causing a series of problems in people’s life,and electromagnetic absorbers with lightweight and broad absorbing bandwidth properties are widely desired.In this work,novel sandwich-... Electromagnetic pollution has been causing a series of problems in people’s life,and electromagnetic absorbers with lightweight and broad absorbing bandwidth properties are widely desired.In this work,novel sandwich-like 2D laminated Fe&TiO2 nanoparticles@C nanocomposites were rationally designed and successfully developed from the MXene–MOFs hybrids.The formation of Fe and rutile-TiO2 nanoparticles sandwiched by the two-dimensional carbon nanosheets provided strong electromagnetic energy attenuation and good impedance matching for electromagnetic wave(EMW)absorption.As expected,the nanocomposites achieved a broad effective absorption bandwidth of 6.5 GHz at a thickness of only 1.6 mm and the minimum reflection loss(RL)value of−51.8 dB at 6.6 GHz with a thickness of 3 mm.This work not only provides a good design and fabricating concept for the laminated metal and functional nanoparticles@C nanocomposites with good EMW absorption,but also offers an important guideline to fabricate various two-dimensional nanocomposites derived from the MXene precursors. 展开更多
关键词 MXene Metal–organic frameworks NANOCOMPOSITES electromagnetic wave absorption
下载PDF
Microstructure Design of High-Entropy Alloys Through a Multistage Mechanical Alloying Strategy for Temperature-Stable Megahertz Electromagnetic Absorption 被引量:6
5
作者 Xiaoji Liu Yuping Duan +4 位作者 Yuan Guo Huifang Pang Zerui Li Xingyang Sun Tongmin Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第9期49-62,共14页
Developing megahertz(MHz)electromagnetic wave(EMW)absorption materials with broadband absorption,multi-temperature adaptability,and facile preparation method remains a challenge.Herein,nanocrystalline FeCoNiCr_(0.4)Cu... Developing megahertz(MHz)electromagnetic wave(EMW)absorption materials with broadband absorption,multi-temperature adaptability,and facile preparation method remains a challenge.Herein,nanocrystalline FeCoNiCr_(0.4)Cu_(0.2) high-entropy alloy powders(HEAs)with both large aspect ratios and thin intergranular amorphous layers are constructed by a multistage mechanical alloying strategy,aiming to achieve excellent and temperature-stable permeability and EMW absorption.A single-phase face-centered cubic structure with good ductility and high crystallinity is obtained as wet milling precursors,via precisely controlling dry milling time.Then,HEAs are flattened to improve aspect ratios by synergistically regulating wet milling time.FeCoNiCr_(0.4)Cu_(0.2) HEAs with dry milling 20 h and wet milling 5 h(D20)exhibit higher and more stable permeability because of larger aspect ratios and thinner intergranular amorphous layers.The maximum reflection loss(RL)of D20/SiO_(2) composites is greater than-7 dB with 5 mm thickness,and EMW absorption bandwidth(RL<-7 dB)can maintain between 523 and 600 MHz from-50 to 150℃.Furthermore,relying on the“cocktail effect”of HEAs,D20 sample also exhibits excellent corrosion resistance and high Curie temperature.This work provides a facile and tunable strategy to design MHz electromagnetic absorbers with temperature stability,broadband,and resistance to harsh environments. 展开更多
关键词 electromagnetic wave absorption Multistage mechanical alloying High-entropy alloys Temperature-stable Corrosion resistance
下载PDF
Design,fabrication and optimization of electromagnetic absorption metamaterials
6
作者 娄琦 张旭东 夏明岗 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期1-14,共14页
For decades,the rapid development of wireless communication has provided people a smarter way of living.However,a significant increase in electromagnetic pollution is an unavoidable consequence.Evading radar detection... For decades,the rapid development of wireless communication has provided people a smarter way of living.However,a significant increase in electromagnetic pollution is an unavoidable consequence.Evading radar detection in modern warfare has also become an important prerequisite for survival on the battlefield.This review provides a comprehensive overview of the current status and types of electromagnetic absorption metamaterials,especially their design and preparation methods.Moreover,this review focuses on the strategies used to optimize the absorber absorption performance.Finally,this review presents a viewpoint on future research on electromagnetic absorption metamaterials,the main challenges that need to be addressed and the possible solutions. 展开更多
关键词 METAMATERIAL electromagnetic wave absorption fractal design
下载PDF
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
7
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces electromagnetic wave absorption Corrosion protection
下载PDF
Integration of Electrical Properties and Polarization Loss Modulation on Atomic Fe–N‑RGO for Boosting Electromagnetic Wave Absorption
8
作者 Kaili Zhang Yuefeng Yan +4 位作者 Zhen Wang Guansheng Ma Dechang Jia Xiaoxiao Huang Yu Zhou 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期517-532,共16页
Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band ... Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism. 展开更多
关键词 electromagnetic wave absorption Fe-N-RGO Dipole polarization Conduction loss Impedance matching
下载PDF
Low‑Temperature Oxidation Induced Phase Evolution with Gradient Magnetic Heterointerfaces for Superior Electromagnetic Wave Absorption
9
作者 Zizhuang He Lingzi Shi +6 位作者 Ran Sun Lianfei Ding Mukun He Jiaming Li Hua Guo Tiande Gao Panbo Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期191-204,共14页
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan... Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption. 展开更多
关键词 Magnetic heterointerfaces Phase evolution Interfacial polarization Magnetic coupling electromagnetic wave absorption
下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption
10
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites electromagnetic wave absorption
下载PDF
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption
11
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces Sulfides Polarization coupling electromagnetic wave absorption
下载PDF
Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment 被引量:6
12
作者 Jianghao Wen Di Lan +4 位作者 Yiqun Wang Lianggui Ren Ailing Feng Zirui Jia Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1701-1712,共12页
Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed ... Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption. 展开更多
关键词 BIOMASS hierarchical porous carbon dielectric loss electromagnetic wave absorption
下载PDF
Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption 被引量:4
13
作者 Kaili Zhang Yuhao Liu +5 位作者 Yanan Liu Yuefeng Yan Guansheng Ma Bo Zhong Renchao Che Xiaoxiao Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期79-96,共18页
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the... Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. 展开更多
关键词 Reduced graphene oxide Fe nanosheets Dielectric loss electromagnetic wave absorption
下载PDF
Structural Engineering of Hierarchical Magnetic/Carbon Nanocomposites via In Situ Growth for High-Efficient Electromagnetic Wave Absorption 被引量:3
14
作者 Xianyuan Liu Jinman Zhou +1 位作者 Ying Xue Xianyong Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期262-278,共17页
Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative stru... Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption.Particularly,hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials,providing immense potential for creating versatile electromagnetic wave absorption materials.Herein,an exceptional multi-dimensional hierarchical structure was meticulously devised,unleashing the full microwave attenuation capabilities through in situ growth,selfreduction,and multi-heterogeneous interface integration.The hierarchical structure features a three-dimensional carbon framework,where magnetic nanoparticles grow in situ on the carbon skeleton,creating a necklace-like structure.Furthermore,magnetic nanosheets assemble within this framework.Enhanced impedance matching was achieved by precisely adjusting component proportions,and intelligent integration of diverse interfaces bolstered dielectric polarization.The obtain Fe_(3)O_(4)-Fe nanoparticles/carbon nanofibers/Al-Fe_(3)O_(4)-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss(RLmin)value of−59.3 dB and an effective absorption bandwidth(RL≤−10 dB)extending up to 5.6 GHz at 2.2 mm.These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials. 展开更多
关键词 electromagnetic wave absorption Hierarchical structure In situ growth Self-reduction
下载PDF
Nitrogen‑Doped Magnetic‑Dielectric‑Carbon Aerogel for High‑Efficiency Electromagnetic Wave Absorption 被引量:2
15
作者 Shijie Wang Xue Zhang +5 位作者 Shuyan Hao Jing Qiao Zhou Wang Lili Wu Jiurong Liu Fenglong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期313-327,共15页
Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facil... Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facile construction method of component design with carbon-based aerogels for high-efficiency electromagnetic wave absorption(EWA)materials with a broad effective absorption bandwidth(EAB)and strong absorption yet hits some snags.Herein,the nitrogen-doped magnetic-dielectric-carbon aerogel was obtained via ice template method followed by carbonization treatment,homogeneous and abundant nickel(Ni)and manganese oxide(MnO)particles in situ grew on the carbon aerogels.Thanks to the optimization of impedance matching of dielectric/magnetic components to carbon aerogels,the nitrogen-doped magnetic-dielectric-carbon aerogel(Ni/MnO-CA)suggests a praiseworthy EWA performance,with an ultra-wide EAB of 7.36 GHz and a minimum reflection loss(RLmin)of−64.09 dB,while achieving a specific reflection loss of−253.32 dB mm−1.Furthermore,the aerogel reveals excellent radar stealth,infrared stealth,and thermal management capabilities.Hence,the high-performance,easy fabricated and multifunctional nickel/manganese oxide/carbon aerogels have broad application aspects for electromagnetic protection,electronic devices and aerospace. 展开更多
关键词 electromagnetic wave absorption Wide bandwidth Dielectric-magnetic synergy MULTIFUNCTION
下载PDF
Conjugate ferrocene polymer derived magnetic Fe/C nanocomposites for electromagnetic absorption application 被引量:2
16
作者 Aming Xie Zhendong Ma +5 位作者 Ziming Xiong Weijin Li Lai Jiang Qiu Zhuang Siyao Cheng Wei Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第8期125-131,共7页
Coordination bonds are relatively unstable compared to covalent bonds,and common carbon-based absorbing material precursors are bonded in the form of coordination bonds.In this work,we have introduced ferrocene units ... Coordination bonds are relatively unstable compared to covalent bonds,and common carbon-based absorbing material precursors are bonded in the form of coordination bonds.In this work,we have introduced ferrocene units into conjugated microporous polymers(CMP)in one step by Suzuki reaction.By adjusting the proportion of ferrocene units,a series of magnetic Fe-C nanocomposites(Fe-P-XC)derived from conjugated ferrocene polymers without heteroatom doping(N,S,P,etc.)were formed.The Fe-P-2C composite has good absorption properties with minimum reflection loss at 4.4 GHz(-58.66 dB)and effective absorption bandwidth(EAB)of 6.28 GHz at 2.4 mm(11.72-18 GHz).Compared with the precursor materials formed by coordination bonds,the present work reveals the electromagnetic wave absorption mechanism of carbon-based materials without heteroatom doping through a simple and effective strategy. 展开更多
关键词 Covalent bonds Suzuki reaction Conjugated ferrocene polymers electromagnetic wave absorption
原文传递
From VIB‑to VB‑Group Transition Metal Disulfides:Structure Engineering Modulation for Superior Electromagnetic Wave Absorption 被引量:2
17
作者 Junye Cheng Yongheng Jin +10 位作者 Jinghan Zhao Qi Jing Bailong Gu Jialiang Wei Shenghui Yi Mingming Li Wanli Nie Qinghua Qin Deqing Zhang Guangping Zheng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期218-257,共40页
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field... The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance. 展开更多
关键词 Transition metal disulfides electromagnetic wave absorption Impedance matching Structure engineering modulation
下载PDF
Transparent electromagnetic absorption film derived from the biomass derivate 被引量:1
18
作者 Bohan Zhang Jiacheng Cui +4 位作者 Dapeng He Jiaming Zhang Lieji Yang Wei Zhu Hualiang Lv 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第18期98-106,共9页
Electromagnetic wave absorption materials featuring small thicknesses and wide effective absorption bandwidth(EAB)are highly required for next-generation portable devices,wearable electronics,and blooming military app... Electromagnetic wave absorption materials featuring small thicknesses and wide effective absorption bandwidth(EAB)are highly required for next-generation portable devices,wearable electronics,and blooming military applications.However,traditional EM particle absorbents,such as carbon-based,mag-netic metal-based,and MXene-based materials are always visible black,which severely hinders their uti-lization as microwave-stealth smart window alternatives.Therefore,it is a critical challenge to fabricate flexible windows simultaneously possessing high optical transmittance and excellent EM wave absorption properties.Herein,we prepared a transparent wood composite with an optical transmittance value of more than-83%through a delignification and polymer composite immersion method.The delignification process could remove the light-absorbing lignin component,and the transparent woods were realized by immersing the delignified wood into refractive-index-matched pre-polymerized acrylamide(AM)in-cluding minor silver nanowires,carbon nanotubes,and reduced graphene oxides.In addition,due to the presence of numerous polarization centers originating from hydrophilic functional groups and conductive fillers,the transparent wood composite showed superior EM absorption performance,and EAB can reach 9.5 GHz,almost occupying the whole X band(8.2-12.4 GHz)and Ku band(12.4-18 GHz)at a thickness of 2.0 mm.Furthermore,the transparent wood presented a great insulative thermal performance with a low thermal conductivity of 0.45 W m^(−1)K^(−1)(half of common glass).The developed transparent wood com-posites offered significant potential as smart energy-efficient windows with the expectation to survive military equipment and alleviate EM pollution. 展开更多
关键词 electromagnetic wave absorption Dielectric loss Optical transmittance POLYACRYLAMIDE Wood composite
原文传递
Efficient Electromagnetic Wave Absorption and Thermal Infrared Stealth in PVTMS@MWCNT Nano‑Aerogel via Abundant Nano‑Sized Cavities and Attenuation Interfaces 被引量:1
19
作者 Haoyu Ma Maryam Fashandi +5 位作者 Zeineb Ben Rejeb Xin Ming Yingjun Liu Pengjian Gong Guangxian Li Chul B.Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期370-383,共14页
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT... Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work. 展开更多
关键词 Nano-pore size Heterogeneous interface electromagnetic wave absorption Thermal infrared stealth Nano-aerogel
下载PDF
Enhancing electromagnetic wave absorption with core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres 被引量:1
20
作者 Xuewen Jiang Qian Wang +7 位作者 Limeng Song Hongxia Lu Hongliang Xu Gang Shao Hailong Wang Rui Zhang Changan Wang Bingbing Fan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期90-104,共15页
Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const... Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.” 展开更多
关键词 core‐shell structure electromagnetic wave absorption multiloss mechanism SiO_(2)@MXene@MoS_(2)
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部