The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste roc...The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste rock dump under construction on two adjoining tailings ponds. The consolidation of the tailings foundation and the filling quality of the waste rock are investigated by the transient electromagnetic method through detecting water-rich areas and loose packing areas, from which, the depth of phreatic line is also estimated. With such information and the material parameters, the numerical method based on shear strength reduction is applied to analyzing the overall stability of the waste rock dump and the tailings ponds over a number of typical cross sections under both current and designed conditions, where the complex geological profiles exposed by site investigation are considered. Through numerical experiments, the influence of soft lenses in the tailings and possible loose packing areas in the waste rock is examined. Although large displacements may develop due to the soft tailings foundation, the results show that the waste rock dump satisfies the safety requirements under both present and designed conditions.展开更多
With wider applications of power electronic devices in modern power systems,simulation using traditional electro-mechanical and electromagnetic simulation tools suffer from low speed and imprecision.Multi-rate technol...With wider applications of power electronic devices in modern power systems,simulation using traditional electro-mechanical and electromagnetic simulation tools suffer from low speed and imprecision.Multi-rate technologies can greatly improve simulation efficiency by avoiding simulating the entire system using a small time-step.However,the drawbacks of the current synchronization mechanisms is that they introduce numerical errors and numerical instabilities in multi-rate parallel simulations.An improved multi-rate parallel technology,node splitting interface(NSI),is proposed to reduce errors and enhance simulation stability.A new synchronization mechanism is used to avoid prediction and signal delays.Theoretical analyses are carried out to prove the convergence and absolute stability of the proposed NSI algorithm.This algorithm is particularly suitable for simultaneously investigating long term dynamics of DC grids and fast transients of power electronic converters.展开更多
基金Projects(51209118,71373245)supported by the National Natural Science Foundation of ChinaProject(2014JBKY01)supported by the Fundamental Research Funds for CASST,China
文摘The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste rock dump under construction on two adjoining tailings ponds. The consolidation of the tailings foundation and the filling quality of the waste rock are investigated by the transient electromagnetic method through detecting water-rich areas and loose packing areas, from which, the depth of phreatic line is also estimated. With such information and the material parameters, the numerical method based on shear strength reduction is applied to analyzing the overall stability of the waste rock dump and the tailings ponds over a number of typical cross sections under both current and designed conditions, where the complex geological profiles exposed by site investigation are considered. Through numerical experiments, the influence of soft lenses in the tailings and possible loose packing areas in the waste rock is examined. Although large displacements may develop due to the soft tailings foundation, the results show that the waste rock dump satisfies the safety requirements under both present and designed conditions.
基金This work was supported in part by the People Programme(Marie Curie Actions)of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement(No.317221)project title MEDOW,in part supported by the Project of National Science Foundation for Distinguished Young Scholars of China(No.51407164).
文摘With wider applications of power electronic devices in modern power systems,simulation using traditional electro-mechanical and electromagnetic simulation tools suffer from low speed and imprecision.Multi-rate technologies can greatly improve simulation efficiency by avoiding simulating the entire system using a small time-step.However,the drawbacks of the current synchronization mechanisms is that they introduce numerical errors and numerical instabilities in multi-rate parallel simulations.An improved multi-rate parallel technology,node splitting interface(NSI),is proposed to reduce errors and enhance simulation stability.A new synchronization mechanism is used to avoid prediction and signal delays.Theoretical analyses are carried out to prove the convergence and absolute stability of the proposed NSI algorithm.This algorithm is particularly suitable for simultaneously investigating long term dynamics of DC grids and fast transients of power electronic converters.