This study analyzed the difference between using a downward breaststroke kick and a horizontal breaststroke kick in a sample of world class elite swimmers.We compared average muscle activity of the gluteus maximus,qua...This study analyzed the difference between using a downward breaststroke kick and a horizontal breaststroke kick in a sample of world class elite swimmers.We compared average muscle activity of the gluteus maximus,quadriceps femoris(vastus medialis and rectus femoris),hamstring/long head of the biceps femoris,gastrocnemius medialis,rectus abdominal,and erector spinae when using the downward breaststroke kick technique.We find that when this sample of swimmers utilized the downward breaststroke kick,max speed and velocity per stroke increased,measured by 12,788 EMG samples,where the results are highly correlated to duration of the aerodynamic buoyant force in breaststroke kick technique.The increases in performance observed from measuring the world class elite swimmers is highly correlated to the duration of the kick aerodynamic buoyant force.Among this sample of elite swimmers,the longer a swimmer demonstrates a buoyant force breaststroke kick,the lower the time in a 100 breaststroke.展开更多
The Gaussian mixture model (GMM), k-nearest neighbor (k-NN), quadratic discriminant analysis (QDA), and linear discriminant analysis (LDA) were compared to classify wrist motions using surface electromyogram (EMG). Ef...The Gaussian mixture model (GMM), k-nearest neighbor (k-NN), quadratic discriminant analysis (QDA), and linear discriminant analysis (LDA) were compared to classify wrist motions using surface electromyogram (EMG). Effect of feature selection in EMG signal processing was also verified by comparing classification accuracy of each feature, and the enhancement of classification accuracy by normalization was confirmed. EMG signals were acquired from two electrodes placed on the forearm of twenty eight healthy subjects and used for recognition of wrist motion. Features were extracted from the obtained EMG signals in the time domain and were applied to classification methods. The difference absolute mean value (DAMV), difference absolute standard deviation value (DASDV), mean absolute value (MAV), root mean square (RMS) were used for composing 16 double features which were combined of two channels. In the classification methods, the highest accuracy of classification showed in the GMM. The most effective combination of classification method and double feature was (MAV, DAMV) of GMM and its classification accuracy was 96.85%. The results of normalization were better than those of non-normalization in GMM, k-NN, and LDA.展开更多
文摘This study analyzed the difference between using a downward breaststroke kick and a horizontal breaststroke kick in a sample of world class elite swimmers.We compared average muscle activity of the gluteus maximus,quadriceps femoris(vastus medialis and rectus femoris),hamstring/long head of the biceps femoris,gastrocnemius medialis,rectus abdominal,and erector spinae when using the downward breaststroke kick technique.We find that when this sample of swimmers utilized the downward breaststroke kick,max speed and velocity per stroke increased,measured by 12,788 EMG samples,where the results are highly correlated to duration of the aerodynamic buoyant force in breaststroke kick technique.The increases in performance observed from measuring the world class elite swimmers is highly correlated to the duration of the kick aerodynamic buoyant force.Among this sample of elite swimmers,the longer a swimmer demonstrates a buoyant force breaststroke kick,the lower the time in a 100 breaststroke.
基金Project(NIPA-2012-H0401-12-1007) supported by the MKE(The Ministry of Knowledge Economy), Korea, supervised by the NIPAProject(2010-0020163) supported by Key Research Institute Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Korea
文摘The Gaussian mixture model (GMM), k-nearest neighbor (k-NN), quadratic discriminant analysis (QDA), and linear discriminant analysis (LDA) were compared to classify wrist motions using surface electromyogram (EMG). Effect of feature selection in EMG signal processing was also verified by comparing classification accuracy of each feature, and the enhancement of classification accuracy by normalization was confirmed. EMG signals were acquired from two electrodes placed on the forearm of twenty eight healthy subjects and used for recognition of wrist motion. Features were extracted from the obtained EMG signals in the time domain and were applied to classification methods. The difference absolute mean value (DAMV), difference absolute standard deviation value (DASDV), mean absolute value (MAV), root mean square (RMS) were used for composing 16 double features which were combined of two channels. In the classification methods, the highest accuracy of classification showed in the GMM. The most effective combination of classification method and double feature was (MAV, DAMV) of GMM and its classification accuracy was 96.85%. The results of normalization were better than those of non-normalization in GMM, k-NN, and LDA.