Describes the application of the Keldysh Faisal Reiss(KFR)theory to the calculation of electron spectrum of Kr at laser intensity of 2×10 14 W/cm 2, 3×10 15 W/cm 2, and 3×10 16 W/cm 2 driven by a circul...Describes the application of the Keldysh Faisal Reiss(KFR)theory to the calculation of electron spectrum of Kr at laser intensity of 2×10 14 W/cm 2, 3×10 15 W/cm 2, and 3×10 16 W/cm 2 driven by a circularly polarized laser pulse.展开更多
Electron spectrum in doped n-Si quantum wires is calculated by the Thomas-Fermi (TF) method under finite temperatures. The many-body exchange corrections are taken into account. The doping profile is arbitrary. At the...Electron spectrum in doped n-Si quantum wires is calculated by the Thomas-Fermi (TF) method under finite temperatures. The many-body exchange corrections are taken into account. The doping profile is arbitrary. At the first stage, the electron potential energy is calculated from a simple two-dimensional equation. The effective iteration scheme is proposed there that is valid for multidimensional problems. Then the energy levels and wave functions of this quantum well are simulated from the Schrödinger equations. The expansion by the full set of eigenfunctions of the linear harmonic oscillator is used. The quantum mechanical perturbation theory can be utilized to compute the energy levels. Generally, the perturbation theory for degenerate energy levels should be used.展开更多
The structures of 2,7'-(ethylene)-bis-8-hydroxyquinoline and its derivatives were optimized at the ground states using ab initio HF and B3LYP methods. At the same time, the molecular structures of the first singlet...The structures of 2,7'-(ethylene)-bis-8-hydroxyquinoline and its derivatives were optimized at the ground states using ab initio HF and B3LYP methods. At the same time, the molecular structures of the first singlet excited state for 2,7'-(ethylene)-bis-8-hydroxyqulnoline and its derivatives were optimized by CIS/6-31G(d). The absorption and emission spectra based on the above structures were obtained by the time-dependent density functional theory (TD-DFT) by the B3LYP method with the 6-31G(d) basis set. The calculated results of luminescence originate from the electronic transition from the hydroxphenol ring of 8-hydroxyquinoline A to the pyridine ring of 8-hydroxyquinoline B. Their luminescence wave bands can be tuned by different substituents on the ligand of 8-hydroxyquinoline.展开更多
The electron energy spectrum is one of the most important characteristics of an electron beam that is extracted from a linear accelerator. The most direct way to determine an electron spectrum would be to use a magnet...The electron energy spectrum is one of the most important characteristics of an electron beam that is extracted from a linear accelerator. The most direct way to determine an electron spectrum would be to use a magnetic spectrometer and this method could also give results with high precision and effectiveness. In this article we describe our design of a new multi-layer absorption method, which is based on the depth-dose curves method that can be used in most irradiation accelerators, and adds the Monte Carlo simulation and iterative algorithm in order to reconstruct the electron energy spectrum. In this article the energy spectrum was measured using these two methods, and good results were acquired. These results could be crosschecked, which made the results more reliable.展开更多
Electron density and Faraday rotation angle are important physical parameters in nuclear fusion research.To measure them simultaneously,the three-wave polarimeter/interferometer diagnostic system is applied.Both the f...Electron density and Faraday rotation angle are important physical parameters in nuclear fusion research.To measure them simultaneously,the three-wave polarimeter/interferometer diagnostic system is applied.Both the final probe output signal and the reference signal contain three frequency components.The time-varying phase difference curve of each frequency component can be measured by the Real-time Dynamic Spectrum Analysis(RDSA)method based on Field-Programmable Gate Array(FPGA).The phase difference precision is better than 0.1° and the real-time feedback delay is less than 1 ms,which satisfy the requirements of HL-2A.展开更多
Secondary electron emission(SEE)of metal and dielectric materials plays a key role in multipactor discharge,which is a bottle neck problem for high-power satelliate components.Measurements of both the secondary electr...Secondary electron emission(SEE)of metal and dielectric materials plays a key role in multipactor discharge,which is a bottle neck problem for high-power satelliate components.Measurements of both the secondary electron yield(SEY)and the secondary electron energy spectrum(SES)are performed on metal samples for an accurate description of the real SEE phenomenon.In order to simplify the fitting process and improve the simulation efficiency,an improved model is proposed for the description of secondary electrons(SE)emitted from the material surface,including true,elastic,and inelastic SE.Embedding the novel SES model into the electromagnetic particle-in-cell method,the electronic resonant multipactor in microwave components is simulated successfully and hence the discharge threshold is predicted.Simulation results of the SES variation in the improved model demonstrate that the multipactor threshold is strongly dependent on SES.In addition,the mutipactor simulation results agree quite well with the experiment for the practical microwave component,while the numerical model of SEY and SES fits well with the sample data taken from the microwave component.展开更多
In this paper a series of ab initio SCF and configuration calculations were reported for the ground state and excited states X^2E, A^2E,~2B_2 and ~2A_1 of allene.For ground state X^2E Jahn- Teller distorsion was discu...In this paper a series of ab initio SCF and configuration calculations were reported for the ground state and excited states X^2E, A^2E,~2B_2 and ~2A_1 of allene.For ground state X^2E Jahn- Teller distorsion was discussed and a twisted angle of 50° and a torsional barriers of 0.21—0.51 eV were derived.Based on calculated results,the experimental photoelectron spectrum of allene has been assigned.展开更多
WnC0'± (n= 1-6) clusters are investigated by using the density functional theory (DFT) at the B3LYP/LANL2DZ level. We find that the neutral, anionic and cationic ground state structures are similar within th...WnC0'± (n= 1-6) clusters are investigated by using the density functional theory (DFT) at the B3LYP/LANL2DZ level. We find that the neutral, anionic and cationic ground state structures are similar within the same size, and constituted by substituting a C atom for one W atom in the structures of Wn+1 clusters. The natural bond orbital (NBO) charge analyses indicate that the direction of electron transfer is from the W atom to the 2p orbital of the C atom. In addition, the calculated infrared spectra of the WnC0'± (n= 2-6) clusters manifest that the vibrational frequencies of neutral, anionic and cationic clusters are similar in a range of 80 cm-1-864 cm-1. The high frequency, strong peak modes are found to be an almost stretched deformation of the carbide atom. Finally, the polarizabilities of WnC0'± (n= 1-6) clusters are also discussed.展开更多
The geometrical structures of 2 (2 hydroxyphenyl) pyridine(PP) and its protonation states were optimized by means of the B3LYP/6 31G(d) method. For all the selected systems, the existence of H bond is in favor of ...The geometrical structures of 2 (2 hydroxyphenyl) pyridine(PP) and its protonation states were optimized by means of the B3LYP/6 31G(d) method. For all the selected systems, the existence of H bond is in favor of the stability of the systems. On the basis of the optimized geometrical structures, their electronic spectrum properties were studied by time dependent density functional theory(TD DFT) methosd via a hybrid function of B3LYP and 6 31G(d) basis set. The TD DFT calculation result predicts the absorption spectrum of PP at 324 nm(3.82 eV), which is in very good agreement with the experimental value of 322 nm( 3.85 eV ) determined in solvent chloroform. The absorption spectra of the two protonation states both exert a red shift in various pH media.展开更多
Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development...Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.展开更多
The secondary electrons spectrum in XPS can be used to determine the work function of polyaniline (PANI). It is shown that the work function of PANI depends on the protonation state and the polymerization method used.
The cosmic-ray total electron spectrum (electrons plus positrons) has been measured precisely up to TeV energies, with more interesting features found. Exhaustive analyses of the electron spectrum strongly support a...The cosmic-ray total electron spectrum (electrons plus positrons) has been measured precisely up to TeV energies, with more interesting features found. Exhaustive analyses of the electron spectrum strongly support a spectral hardening above 100 GeV, rather than a featureless single power-law, which is confirmed by the most recent observations. Meanwhile, the measurements of the DAMPE satellite have verified the presence of a knee-like structure around 1 TeV in the electron spectrum, resembling the cosmic-ray knee. In this paper, we establish a physical model in which the observed electron spectrum is composed of a superposition of CR sources with various spectral indices and high-energy cutoffs. The dispersion of the power index is assumed to be Gaussian, while the cutoff energy Ec follows a power-law distribution. These simple ideas can account naturally for both the hundred-GeV excess and the TeV spectral break.展开更多
We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found ...We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found that in helical two-stream electron beams the growth rate of the two-stream instability increases with the beam entrance angle. An SCW with the broad frequency spectrum, in which higher harmonics have higher amplitudes, forms when the frequency of the first SCW harmonic is much less than the critical frequency of the two-stream instability. For helical electron beams the spectrum expands with the increase of the beam entrance angle. Moreover, we obtain that utilizing helical electron beams in multiharmonic two-stream superheterodyne free-electron lasers leads to the improvement of their amplification characteristics, the frequency spectrum broadening in multiharmonic signal generation mode, and the reduction of the overall system dimensions.展开更多
We consider a three-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. Our research aim consists of studying the structure of essential spectrum and discrete spectra of the energy...We consider a three-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. Our research aim consists of studying the structure of essential spectrum and discrete spectra of the energy operator of three-electron systems in the impurity Hubbard model in the quartet state of the system in a <em>v</em>-dimensional lattice. We have reduced the study of the spectrum of the three-electron quartet state operator in the impurity Hubbard model to the study of the spectrum of a simpler operator. We proved the essential spectra of the three-electron systems in the Impurity Hubbard model in the quartet state is the union of no more than six segments, and the discrete spectrum of the system is consists of no more than four eigenvalues.展开更多
We consider a five-electron system in the Hubbard model with a coupling between nearest-neighbors. The structure of essential spectrum and discrete spectrum of the systems in the third and fourth doublet states in a &...We consider a five-electron system in the Hubbard model with a coupling between nearest-neighbors. The structure of essential spectrum and discrete spectrum of the systems in the third and fourth doublet states in a <em>v</em>-dimensional lattice is investigated. We prove that the essential spectrum of the system in a third doublet state consists is the union of at most four segments, and discrete spectrum of the system is empty. We show that the essential spectrum of the system in a fourth doublet state consists of the union of at most seven segments, and discrete spectrum of the system consists of no more than one point.展开更多
The angular spectrum of spontaneous emission in a two-dimensional undulator free-electron laser is analyzed theoretically. Numerical calculation shows that the 3-th harmonic spontaneous emission power density can be g...The angular spectrum of spontaneous emission in a two-dimensional undulator free-electron laser is analyzed theoretically. Numerical calculation shows that the 3-th harmonic spontaneous emission power density can be greatly enhanced by using a two-dimensional undulator, for which l=s, so the harmonic number can be selected by selecting l. Therefore, the higher harmonic operation of a free-electron laser can be realized selectively.展开更多
We consider the energy operator of six-electron systems in the Hubbard model and investigate the structure of essential spectra and discrete spectrum of the system in the first quintet and first singlet states in the ...We consider the energy operator of six-electron systems in the Hubbard model and investigate the structure of essential spectra and discrete spectrum of the system in the first quintet and first singlet states in the v-dimensional lattice.展开更多
文摘Describes the application of the Keldysh Faisal Reiss(KFR)theory to the calculation of electron spectrum of Kr at laser intensity of 2×10 14 W/cm 2, 3×10 15 W/cm 2, and 3×10 16 W/cm 2 driven by a circularly polarized laser pulse.
文摘Electron spectrum in doped n-Si quantum wires is calculated by the Thomas-Fermi (TF) method under finite temperatures. The many-body exchange corrections are taken into account. The doping profile is arbitrary. At the first stage, the electron potential energy is calculated from a simple two-dimensional equation. The effective iteration scheme is proposed there that is valid for multidimensional problems. Then the energy levels and wave functions of this quantum well are simulated from the Schrödinger equations. The expansion by the full set of eigenfunctions of the linear harmonic oscillator is used. The quantum mechanical perturbation theory can be utilized to compute the energy levels. Generally, the perturbation theory for degenerate energy levels should be used.
基金Supported by the Foundation of Education Committee of Gansu Province (No. 0708-11)foundation of Tianshui Normal University (No. TSA0604)
文摘The structures of 2,7'-(ethylene)-bis-8-hydroxyquinoline and its derivatives were optimized at the ground states using ab initio HF and B3LYP methods. At the same time, the molecular structures of the first singlet excited state for 2,7'-(ethylene)-bis-8-hydroxyqulnoline and its derivatives were optimized by CIS/6-31G(d). The absorption and emission spectra based on the above structures were obtained by the time-dependent density functional theory (TD-DFT) by the B3LYP method with the 6-31G(d) basis set. The calculated results of luminescence originate from the electronic transition from the hydroxphenol ring of 8-hydroxyquinoline A to the pyridine ring of 8-hydroxyquinoline B. Their luminescence wave bands can be tuned by different substituents on the ligand of 8-hydroxyquinoline.
文摘The electron energy spectrum is one of the most important characteristics of an electron beam that is extracted from a linear accelerator. The most direct way to determine an electron spectrum would be to use a magnetic spectrometer and this method could also give results with high precision and effectiveness. In this article we describe our design of a new multi-layer absorption method, which is based on the depth-dose curves method that can be used in most irradiation accelerators, and adds the Monte Carlo simulation and iterative algorithm in order to reconstruct the electron energy spectrum. In this article the energy spectrum was measured using these two methods, and good results were acquired. These results could be crosschecked, which made the results more reliable.
基金supported by National Natural Science Foundation of China(Nos.11375195 and 11275059)the National Magnetic Confinement Fusion Science Program of China(Nos.2013GB104003,2014GB109001)
文摘Electron density and Faraday rotation angle are important physical parameters in nuclear fusion research.To measure them simultaneously,the three-wave polarimeter/interferometer diagnostic system is applied.Both the final probe output signal and the reference signal contain three frequency components.The time-varying phase difference curve of each frequency component can be measured by the Real-time Dynamic Spectrum Analysis(RDSA)method based on Field-Programmable Gate Array(FPGA).The phase difference precision is better than 0.1° and the real-time feedback delay is less than 1 ms,which satisfy the requirements of HL-2A.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1537211,11705142,and 11675278)the National Key Laboratory Foundation,China(Grant No.9140C530101150C53011)
文摘Secondary electron emission(SEE)of metal and dielectric materials plays a key role in multipactor discharge,which is a bottle neck problem for high-power satelliate components.Measurements of both the secondary electron yield(SEY)and the secondary electron energy spectrum(SES)are performed on metal samples for an accurate description of the real SEE phenomenon.In order to simplify the fitting process and improve the simulation efficiency,an improved model is proposed for the description of secondary electrons(SE)emitted from the material surface,including true,elastic,and inelastic SE.Embedding the novel SES model into the electromagnetic particle-in-cell method,the electronic resonant multipactor in microwave components is simulated successfully and hence the discharge threshold is predicted.Simulation results of the SES variation in the improved model demonstrate that the multipactor threshold is strongly dependent on SES.In addition,the mutipactor simulation results agree quite well with the experiment for the practical microwave component,while the numerical model of SEY and SES fits well with the sample data taken from the microwave component.
基金Project supported by the National Natural Science Foundation of China.
文摘In this paper a series of ab initio SCF and configuration calculations were reported for the ground state and excited states X^2E, A^2E,~2B_2 and ~2A_1 of allene.For ground state X^2E Jahn- Teller distorsion was discussed and a twisted angle of 50° and a torsional barriers of 0.21—0.51 eV were derived.Based on calculated results,the experimental photoelectron spectrum of allene has been assigned.
基金supported by the National Natural Science Foundation of China (Grant No. 51072072)
文摘WnC0'± (n= 1-6) clusters are investigated by using the density functional theory (DFT) at the B3LYP/LANL2DZ level. We find that the neutral, anionic and cationic ground state structures are similar within the same size, and constituted by substituting a C atom for one W atom in the structures of Wn+1 clusters. The natural bond orbital (NBO) charge analyses indicate that the direction of electron transfer is from the W atom to the 2p orbital of the C atom. In addition, the calculated infrared spectra of the WnC0'± (n= 2-6) clusters manifest that the vibrational frequencies of neutral, anionic and cationic clusters are similar in a range of 80 cm-1-864 cm-1. The high frequency, strong peak modes are found to be an almost stretched deformation of the carbide atom. Finally, the polarizabilities of WnC0'± (n= 1-6) clusters are also discussed.
基金Supported by the Excellent Young Teachers Program of MOETrans- century Program me Foundation for the Talentsby the State Education Ministry and Excellent Youth Foundation of Jilin Province
文摘The geometrical structures of 2 (2 hydroxyphenyl) pyridine(PP) and its protonation states were optimized by means of the B3LYP/6 31G(d) method. For all the selected systems, the existence of H bond is in favor of the stability of the systems. On the basis of the optimized geometrical structures, their electronic spectrum properties were studied by time dependent density functional theory(TD DFT) methosd via a hybrid function of B3LYP and 6 31G(d) basis set. The TD DFT calculation result predicts the absorption spectrum of PP at 324 nm(3.82 eV), which is in very good agreement with the experimental value of 322 nm( 3.85 eV ) determined in solvent chloroform. The absorption spectra of the two protonation states both exert a red shift in various pH media.
基金supported by National Natural Science Foundation of China(Grant No.11647150)Young Talents Program of Gansu Province of China(2016)Scientific Research Program of the Higher Education Institutions of Gansu Province of China(Grant No.2016A-068)
文摘Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.
文摘The secondary electrons spectrum in XPS can be used to determine the work function of polyaniline (PANI). It is shown that the work function of PANI depends on the protonation state and the polymerization method used.
基金Supported by National Natural Sciences Foundation of China(11663006,11747316,11135010,11405182)the Research Project of Chinese Ministry of Education(213036A)
文摘The cosmic-ray total electron spectrum (electrons plus positrons) has been measured precisely up to TeV energies, with more interesting features found. Exhaustive analyses of the electron spectrum strongly support a spectral hardening above 100 GeV, rather than a featureless single power-law, which is confirmed by the most recent observations. Meanwhile, the measurements of the DAMPE satellite have verified the presence of a knee-like structure around 1 TeV in the electron spectrum, resembling the cosmic-ray knee. In this paper, we establish a physical model in which the observed electron spectrum is composed of a superposition of CR sources with various spectral indices and high-energy cutoffs. The dispersion of the power index is assumed to be Gaussian, while the cutoff energy Ec follows a power-law distribution. These simple ideas can account naturally for both the hundred-GeV excess and the TeV spectral break.
基金Supported by the Ministry of Education and Science of Ukraine under Grant No 0117U002253
文摘We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found that in helical two-stream electron beams the growth rate of the two-stream instability increases with the beam entrance angle. An SCW with the broad frequency spectrum, in which higher harmonics have higher amplitudes, forms when the frequency of the first SCW harmonic is much less than the critical frequency of the two-stream instability. For helical electron beams the spectrum expands with the increase of the beam entrance angle. Moreover, we obtain that utilizing helical electron beams in multiharmonic two-stream superheterodyne free-electron lasers leads to the improvement of their amplification characteristics, the frequency spectrum broadening in multiharmonic signal generation mode, and the reduction of the overall system dimensions.
文摘We consider a three-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. Our research aim consists of studying the structure of essential spectrum and discrete spectra of the energy operator of three-electron systems in the impurity Hubbard model in the quartet state of the system in a <em>v</em>-dimensional lattice. We have reduced the study of the spectrum of the three-electron quartet state operator in the impurity Hubbard model to the study of the spectrum of a simpler operator. We proved the essential spectra of the three-electron systems in the Impurity Hubbard model in the quartet state is the union of no more than six segments, and the discrete spectrum of the system is consists of no more than four eigenvalues.
文摘We consider a five-electron system in the Hubbard model with a coupling between nearest-neighbors. The structure of essential spectrum and discrete spectrum of the systems in the third and fourth doublet states in a <em>v</em>-dimensional lattice is investigated. We prove that the essential spectrum of the system in a third doublet state consists is the union of at most four segments, and discrete spectrum of the system is empty. We show that the essential spectrum of the system in a fourth doublet state consists of the union of at most seven segments, and discrete spectrum of the system consists of no more than one point.
文摘The angular spectrum of spontaneous emission in a two-dimensional undulator free-electron laser is analyzed theoretically. Numerical calculation shows that the 3-th harmonic spontaneous emission power density can be greatly enhanced by using a two-dimensional undulator, for which l=s, so the harmonic number can be selected by selecting l. Therefore, the higher harmonic operation of a free-electron laser can be realized selectively.
文摘We consider the energy operator of six-electron systems in the Hubbard model and investigate the structure of essential spectra and discrete spectrum of the system in the first quintet and first singlet states in the v-dimensional lattice.