By means of the transfer matrix approach, the linear conductance spectrum for electronic transport through a T-shaped quantum waveguide is calculated. The resonant peaks and the antiresonant dips in the conductance sp...By means of the transfer matrix approach, the linear conductance spectrum for electronic transport through a T-shaped quantum waveguide is calculated. The resonant peaks and the antiresonant dips in the conductance spectrum are mainly focused. The previous prediction about their positions by other theoretical approaches is checked. In addition, a function of spin filtering is suggested based on the interplay of the resonance and antiresonance in this T-shaped quantum waveguide.展开更多
We discover a new wave localization mechanism in a periodic wave system,which can produce a novel type of flat band and is distinct from the known localization mechanisms,i.e.,Anderson localization and flat band latti...We discover a new wave localization mechanism in a periodic wave system,which can produce a novel type of flat band and is distinct from the known localization mechanisms,i.e.,Anderson localization and flat band lattices.The first example we give is a designed electron waveguide(EWG)on 2DEG with special periodic confinement potential.Numerical calculations show that,with proper confinement geometry,electrons can be completely localized in an open waveguide.We interpret this flat band localization(FBL)phenomenon by introducing the concept of self-localized orbitals.Essentially,each unit cell of the waveguide is equivalent to an artificial atom,where the self-localized orbital is a special eigenstate with unique spatial distribution.These self-localized orbitals form the flat bands in the waveguide.Such self-localized orbital induced FBL is a general phenomenon of wave motion,which can arise in any wave systems with carefully engineered boundary conditions.We then design a metallic waveguide(MWG)array to illustrate that similar FBL can be readily realized and observed with electromagnetic waves.展开更多
Electron leakage still needs to be solved for In Ga N-based blue-violet laser diodes(LDs), despite the presence of the electron blocking layer(EBL). To reduce further electron leakage, a new structure of In Ga N-b...Electron leakage still needs to be solved for In Ga N-based blue-violet laser diodes(LDs), despite the presence of the electron blocking layer(EBL). To reduce further electron leakage, a new structure of In Ga N-based LDs with an In Ga N interlayer between the EBL and p-type waveguide layer is designed. The optical and electrical characteristics of these LDs are simulated, and it is found that the adjusted energy band profile in the new structure can improve carrier injection and enhance the effective energy barrier against electron leakage when the In composition of the In Ga N interlayer is properly chosen. As a result, the device performances of the LDs are improved.展开更多
文摘By means of the transfer matrix approach, the linear conductance spectrum for electronic transport through a T-shaped quantum waveguide is calculated. The resonant peaks and the antiresonant dips in the conductance spectrum are mainly focused. The previous prediction about their positions by other theoretical approaches is checked. In addition, a function of spin filtering is suggested based on the interplay of the resonance and antiresonance in this T-shaped quantum waveguide.
基金supported by the National Natural Science Foundation of China (Grant Nos.11874160,12141401,and 11534001)the National Key Research and Development Program of China (No.2017YFA0403501)the Fundamental Research Funds for the Central Universities (HUST:2017KFYXJJ027).
文摘We discover a new wave localization mechanism in a periodic wave system,which can produce a novel type of flat band and is distinct from the known localization mechanisms,i.e.,Anderson localization and flat band lattices.The first example we give is a designed electron waveguide(EWG)on 2DEG with special periodic confinement potential.Numerical calculations show that,with proper confinement geometry,electrons can be completely localized in an open waveguide.We interpret this flat band localization(FBL)phenomenon by introducing the concept of self-localized orbitals.Essentially,each unit cell of the waveguide is equivalent to an artificial atom,where the self-localized orbital is a special eigenstate with unique spatial distribution.These self-localized orbitals form the flat bands in the waveguide.Such self-localized orbital induced FBL is a general phenomenon of wave motion,which can arise in any wave systems with carefully engineered boundary conditions.We then design a metallic waveguide(MWG)array to illustrate that similar FBL can be readily realized and observed with electromagnetic waves.
基金supported by the National Natural Science Foundation of China(Nos.61474110,61377020,61376089,61223005,and 61176126)the National Science Fund for Distinguished Young Scholars(No.60925017)+1 种基金the One Hundred Person Project of the Chinese Academy of Sciencesthe Basic Research Project of Jiangsu Province(No.BK20130362)
文摘Electron leakage still needs to be solved for In Ga N-based blue-violet laser diodes(LDs), despite the presence of the electron blocking layer(EBL). To reduce further electron leakage, a new structure of In Ga N-based LDs with an In Ga N interlayer between the EBL and p-type waveguide layer is designed. The optical and electrical characteristics of these LDs are simulated, and it is found that the adjusted energy band profile in the new structure can improve carrier injection and enhance the effective energy barrier against electron leakage when the In composition of the In Ga N interlayer is properly chosen. As a result, the device performances of the LDs are improved.