A diamond-like carbon (DLC) film is deposited as an electron injection layer between the polymer light-emitting layer(MEH-PPV) and aluminum (Al) cathode electrode in polymer electroluminescence devices (PLEDs)...A diamond-like carbon (DLC) film is deposited as an electron injection layer between the polymer light-emitting layer(MEH-PPV) and aluminum (Al) cathode electrode in polymer electroluminescence devices (PLEDs) using a radio frequency plasma deposition system. The source material of the DLC is n-butylamine. The devices consist of indium tin oxide (ITO)/MEH-PPV/DLC/Al. Electron injection properties are investigated through I-V characteristics,and the mechanism of electron injection enhancement due to a thin DLC layer has been studied. It is found that: (1) a DLC layer thinner than 1.0nm leads to a higher turn-on voltage and decreased electroluminescent (EL) efficiency; (2) a 5.0nm DLC layer significantly enhances the electron injection and results in the lowest turn-on voltage and the highest EL efficiency; (3) DLC layer that exceeds 5.0nm results in poor device performance;and(4) EL emission can hardly be detected when the layer exceeds 10.0nm. The properties of ITO/MEH-PPV/DLC/Al and ITO/MEH-PPV/LiF/Al are investigated comparatively.展开更多
Organic light emitting diodes employing magnesium doped electron acceptor 3, 4, 9, 10 perylenetetracarboxylic dianhydride (Mg:PTCDA) as electron injection layer and silver as cathode were demonstrated. As compared ...Organic light emitting diodes employing magnesium doped electron acceptor 3, 4, 9, 10 perylenetetracarboxylic dianhydride (Mg:PTCDA) as electron injection layer and silver as cathode were demonstrated. As compared to Mg : Ag cathode, the combination of the Mg : PTCDA layer and silver provided enhanced electron injection into tris (8- quinolinolato) aluminium. The device with 1 : 2 Mg : PTCDA and Ag showed an increase of about 12% in the maximum current efficiency, mainly due to the improved hole-electron balance, and an increase of about 28% in the maximum power efficiency, as compared to the control device using Mg : Ag cathode. The properties of Mg : PTCDA composites were studied as well.展开更多
Relativistic electron injections are one of the mechanisms of relativistic(≥0.5 MeV) electron enhancements in the Earth’s outer radiation belt. In this study, we present a statistical observation of 600 keV electron...Relativistic electron injections are one of the mechanisms of relativistic(≥0.5 MeV) electron enhancements in the Earth’s outer radiation belt. In this study, we present a statistical observation of 600 keV electron injections in the outer radiation belt by using data from the Van Allen Probes. On the basis of the characteristics of different injections, 600 keV electron injections in the outer radiation belt were divided into pulsed electron injections and nonpulsed electron injections. The 600 keV electron injections were observed at 4.5 < L <6.4 under the geomagnetic conditions of 450 nT < AE < 1,450 nT. An L of ~4.5 is an inward limit for 600 keV electron injections. Before the electron injections, a flux negative L shell gradient for ≤0.6 MeV electrons or low electron fluxes in the injected region were observed. For600 keV electron injections at different L shells, the source populations from the Earth’s plasma sheet were different. For 600 keV electron injections at higher L shells, the source populations were higher energy electrons(~200 keV at X ~–9 R_(E)), whereas the source populations for 600 keV electron injections at lower L shells were lower energy electrons(~80 keV at X ~–9 R_(E)). These results are important to further our understanding of electron injections and rapid enhancements of 600 keV electrons in the Earth’s outer radiation belt.展开更多
We investigate the electron injection effect of inserting a thin aluminum(Al) layer into cesium carbonate(Cs2CO3)injection layer. Two groups of organic light-emitting devices(OLEDs) are fabricated. For the first...We investigate the electron injection effect of inserting a thin aluminum(Al) layer into cesium carbonate(Cs2CO3)injection layer. Two groups of organic light-emitting devices(OLEDs) are fabricated. For the first group of devices based on Alq3, we insert a thin Al layer of different thickness into Cs2CO3 injection layer, and the device's maximum current efficiency of 6.5 cd/A is obtained when the thickness of the thin Al layer is 0.4 nm. However, when the thickness of Al layer is 0.8 nm, the capacity of electron injection is the strongest. To validate the universality of this approach, then we fabricate another group of devices based on another blue emitting material. The maximum current efficiency of the device without and with a thin Al layer is 4.51 cd/A and 4.84 cd/A, respectively. Inserting a thin Al layer of an appropriate thickness into Cs2CO3 layer can result in the reduction of electron injection barrier, enhancement of the electron injection, and improvement of the performance of OLEDs. This can be attributed to the mechanism that thermally evaporated Cs2CO3 decomposes into cesium oxides, the thin Al layer reacts with cesium oxides to form Al–O–Cs complex, and the amount of the Al–O–Cs complex can be controlled by adjusting the thickness of the thin Al layer.展开更多
We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su Schrieffer Heeger (SSH) model with a nonadiabatic dynamics method...We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su Schrieffer Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value work-function electrode. For polymer/electrode structures This means that the Schottky barrier is pinned for a small we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontneous electron transfer from electrodes to polymers.展开更多
We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su–Schrieffer–Heeger (SSH) model with a nonadiabatic dynamics method...We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su–Schrieffer–Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value. This means that the Schottky barrier is pinned for a small work-function electrode. For polymer/electrode structures, we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontaneous electron transfer from electrodes to polymers.展开更多
As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor ...As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor accuracy, a feed-forward control strategy based on load combined with proportional-integral-differential (PID) control strategy was proposed, and a digital speed controller applied to the electrical control system was designed. The detailed control strategy of the controller was intro- duced. The hardware design for the controller and the key circuits of motor driving, current sampling and angular signal captu- ring were given, and software architecture was discussed. Combined with a gasoline generator set mounted with EFI system, the controller parameters were tuned and optimized empirically by hardware in loop and bench test methods. Test results show that the speed deviation of generator set is low and the control system is stable in steady state; In transient state the control system responses quickly, has high stability under mutation loads especially when suddenly apply and remove 100% load, the speed deviation is within 8% of reference speed and the transient time is less than 5 s, satisfying the ISO standard.展开更多
The improved energy confinement has been observed in many tokamaks with center pellet injection since 1980's. The pellet enhanced performance ( PEP ) was achieved with high power additional heating in JET and other...The improved energy confinement has been observed in many tokamaks with center pellet injection since 1980's. The pellet enhanced performance ( PEP ) was achieved with high power additional heating in JET and other large tokamaks. The mechanism of the PEP mode has been analyzed theoretically . The analysis shows that a few mechanisms are involved in the reduction of anomalous transport and the relative weight of these mechanisms depends on the experimental conditions. In this paper we report the pellet injection experiment results without auxiliary heating on HL-2A tokamak. Our works focus on the investigation of the electron heat transport in ohmic discharges with center pellet fuelling.展开更多
Here,this work presents an air-stable ultrabright inverted organic lightemitting device(OLED)by using zinc ionchelated polyethylenimine(PEI)as electron injection layer.The zinc chelation is demonstrated to increase th...Here,this work presents an air-stable ultrabright inverted organic lightemitting device(OLED)by using zinc ionchelated polyethylenimine(PEI)as electron injection layer.The zinc chelation is demonstrated to increase the conductivity of the PEI by three orders of magnitude and passivate the polar amine groups.With these physicochemical properties,the inverted OLED shows a record-high external quantum efficiency of 10.0% at a high brightness of 45,610 cd m^(-2) and can deliver a maximum brightness of 121,865 cd m^(-2).Besides,the inverted OLED is also demonstrated to possess an excellent air stability(humidity,35%)with a half-brightness operating time of 541 h@1000 cd m^(-2) without any protection nor encapsulation.展开更多
The performance of polymer light emitting devices(PLEDs)based on polyvinyl carbazole(PVK)is improved by introducing a nanoscale interfacial thin layer,made of poly(ethylene oxide)(PEO),between the calcium cathode and ...The performance of polymer light emitting devices(PLEDs)based on polyvinyl carbazole(PVK)is improved by introducing a nanoscale interfacial thin layer,made of poly(ethylene oxide)(PEO),between the calcium cathode and the PVK emissive layer.It is believed that the PEO layer plays a key role in enhancing the device performance.In comparison to the device with Ca/Al as the cathode,the performance of the PLED with PEO/Ca/Al cathode,including the driving voltage,luminance efficiency is significantly improved.These improvements are attributed to the introduction of a thin layer of PEO that can lower the interfacial barrier and facilitate electron injection.展开更多
Although hot carriers induced degradation of NMOSFETs has been studied for decades, the role of hot electron in this process is still debated. In this paper, the additional substrate hot electrons have been intentiona...Although hot carriers induced degradation of NMOSFETs has been studied for decades, the role of hot electron in this process is still debated. In this paper, the additional substrate hot electrons have been intentionally injected into the oxide layer to analyze tile role of hot electron in hot carrier degradation. The enhanced degradation and the decreased time exponent appear with the injected hot electrons increasing, the degradation increases from 21.80% to 62.00% and the time exponent decreases from 0.59 to 0.27 with Vb decreasing from 0 V to -4 V, at the same time, the recovery also becomes remarkable and which strongly depends on the post stress gate bias Vg. Based on the experimental results, more unrecovered interface traps are created by the additional injected hot electron from the breaking Si-H bond, but the oxide trapped negative charges do not increase after a rapid recovery.展开更多
Introduction: Mechanism of male androgenic alopecia (MAGA) is complex and leads to an excessive hair shedding and decreased hair density. Oral, topical, and injectable autologous treatments demonstrate ability to stim...Introduction: Mechanism of male androgenic alopecia (MAGA) is complex and leads to an excessive hair shedding and decreased hair density. Oral, topical, and injectable autologous treatments demonstrate ability to stimulate hair re-growth, but the response is suboptimal or plateaus off. Synthetic combination of the peptide complex and hyaluronic acid (P-HA) demonstrated hair regrowth in alopecia patients. Electronically-operated pneumatic injections (EPI) generate micro-trauma in the dermis and under wound-healing conditions may enhance regeneration effect of P-HA. Methods: Subjects seeking improvement of their male pattern hair loss (Hamilton-Norwood type 2-4) received the P-HA treatments through EPI. The course included 4 treatments every two weeks over the 8-week period. In 6 months, the hair growth was assessed comparative to baseline by global clinical photography and digital phototrichograms. The treatment safety and tolerability were documented through the whole study period. Results: Twelve men (30-45 years old) completed the treatment course with high tolerability and without adverse events. Post-treatment assessment of the previously bald areas showed improved coverage on the clinical photographs. The phototrichograms demonstrated statistically significant increase in terminal hair density by 36%, cumulative hair thickness by 37%, and follicular units by 20%;all contributing to a 38% increase in cumulated hair density (all p Conclusion: Electronic pneumatic injections are well tolerated and can be safely used for the needle-free administration of the peptide-hyaluronic acid combination in MAGA therapy. We achieved significant hair re-densification in the balding scalp. The exact role of the EPI-induced impact in the hair re-growth mechanism remains to be ascertained. .展开更多
A direct injection low compression ratios diesel rotary engine is designed and studied to find the appropriate application of the electronic controlled high pressure common rail injection system. Current development f...A direct injection low compression ratios diesel rotary engine is designed and studied to find the appropriate application of the electronic controlled high pressure common rail injection system. Current development focuses on the applied fuel injection and ignition strategies, especially concerning the combustion configurations of injectors, ignition source, and combustion chamber. The prototype engine, equipped with Bosch common rail system and high performance electronic control unit (ECU), is designed correspondingly. Studies show that the integration of a common rail injection system and the main and pilot duel injectors configurations, assisted with glow plug ignition device and flexible ECU, represents a promising approach to improve the potential of the low compression ratios diesel rotary engine. Currently the engine can run at 6 kr · min^-1 steadily and the power is about 68 kW/(4 kr ·min^- 1).展开更多
We investigate theoretically the spectral shift of the high-order harmonic generation(HHG)in ZnO driven by a combined laser field by solving the two-band semiconductor Bloch equations(SBEs)in the velocity gauge.The co...We investigate theoretically the spectral shift of the high-order harmonic generation(HHG)in ZnO driven by a combined laser field by solving the two-band semiconductor Bloch equations(SBEs)in the velocity gauge.The combined laser field is synthesized by a fundamental laser pulse and its seventh-frequency laser pulse.When the seventh-frequency laser pulse is added to the rising or falling parts of the fundamental laser field,we find that the spectral blueshift or redshift appears,which is due to the unequal contribution of the rising and falling parts in the fundamental laser field to the harmonics.By analyzing the time-dependent conduction band population in k space,we found that,in addition to the tunneling ionization channel,there is also the resonant electron injection channels which is induced by the seventh-frequency laser pulse.The harmonics generated by the different channels show the spectral redshift or the spectral blueshift,respectively.Through analyzing the k-integrated transient conduction band population of the electrons from different channels,we found that if there is a certain delay in the process of the electron excitation,it will lead to the delay in the harmonic emission,which results in the spectral redshift of the harmonics.展开更多
The on-resistance degradations of the p-type lateral extended drain MOS transistor (pLEDMOS) with thick gate oxide under different hot carrier stress conditions are different, which has been experimentally investiga...The on-resistance degradations of the p-type lateral extended drain MOS transistor (pLEDMOS) with thick gate oxide under different hot carrier stress conditions are different, which has been experimentally investigated. This difference results from the interface trap generation and the hot electron injection, and trapping into the thick gate oxide and field oxide of the pLEDMOS transistor. An improved method to reduce the on-resistance degradations is also presented, which uses the field oxide as the gate oxide instead of the thick gate oxide. The effects are analyzed with a MEDICI simulator.展开更多
A poly ( p-phenylenevinylene ) ( PPV ) alternating copolymer, poly [ ( 2, 5-diphenylene-1, 3, 4-oxadiazole )-4-4' - vinylene-alt-2-methoxy-5-( 2-ethylhexyloxy )-1, 4-phenylenevinylene] (oxa-MEHPV), is synth...A poly ( p-phenylenevinylene ) ( PPV ) alternating copolymer, poly [ ( 2, 5-diphenylene-1, 3, 4-oxadiazole )-4-4' - vinylene-alt-2-methoxy-5-( 2-ethylhexyloxy )-1, 4-phenylenevinylene] (oxa-MEHPV), is synthesized by Heck coupling reaction and characterized with UV-vis, Fourier transform infrared ( FT-IR ), ^1H-NMR and photoluminescence ( PL ) spectroscopy, oxa-MEHPV possesses an outstanding thermal stability and shows excellent solubility in common organic solvents such as dichloromethane, chloroform, toluene, and tetrahydrofuran(THF). The introduction of the electron-deficient 1, 3, 4-oxadiazole units into the MEH-PPV backbone also increases the electron affinities of the conjugated segment, which leads to the blue-shift of the maximum absorption wavelength and makes the polymer have a high optical band-gap energy, good electron-transporting stability and high PL quantum yield.展开更多
Gate current for pMOSFETs is composed of direct tunneling current,channel hot hole,electron injection current,and highly energetic hot holes by secondary impact ionization.The device degradation under V g=V d/2 is m...Gate current for pMOSFETs is composed of direct tunneling current,channel hot hole,electron injection current,and highly energetic hot holes by secondary impact ionization.The device degradation under V g=V d/2 is mainly caused by the injection of hot electrons by primary impact ionization and hot holes by secondary impact ionization,and the device lifetime is assumed to be inversely proportional to the hot holes,which is able to surmount Si-SiO 2 barrier and be injected into the gate oxide.A new lifetime prediction model is proposed on the basis and validated to agree well with the experiment.展开更多
The performance degradation of gate-recessed metal–oxide–semiconductor high electron mobility transistor(MOSHEMT)is compared with that of conventional high electron mobility transistor(HEMT)under direct current(DC)s...The performance degradation of gate-recessed metal–oxide–semiconductor high electron mobility transistor(MOSHEMT)is compared with that of conventional high electron mobility transistor(HEMT)under direct current(DC)stress,and the degradation mechanism is studied.Under the channel hot electron injection stress,the degradation of gate-recessed MOS-HEMT is more serious than that of conventional HEMT devices due to the combined effect of traps in the barrier layer,and that under the gate dielectric of the device.The threshold voltage of conventional HEMT shows a reduction under the gate electron injection stress,which is caused by the barrier layer traps trapping the injected electrons and releasing them into the channel.However,because of defects under gate dielectrics which can trap the electrons injected from gate and deplete part of the channel,the threshold voltage of gate-recessed MOS-HEMT first increases and then decreases as the conventional HEMT.The saturation phenomenon of threshold voltage degradation under high field stress verifies the existence of threshold voltage reduction effect caused by gate electron injection.展开更多
Test results of reducing two stroke motorcycle emissions with new type carburettors and electronic fuel injection systems are presented. Analyses and comparison between different systems are discussed. The adoption o...Test results of reducing two stroke motorcycle emissions with new type carburettors and electronic fuel injection systems are presented. Analyses and comparison between different systems are discussed. The adoption of electronically controlled injection and corresponding electronic control technique is an effective measure of prolonged vitality to improve emissions from two stroke motorcycles. Suggestions about the strategic steps of China′s motorcycle emission control are proposed.展开更多
In blue quantum dot light emitting diodes(QLEDs),electron injection is insufficient,which would degrade device efficiency and stability.Herein,we employ chlorine passivated ZnO nanoparticles as electron transport laye...In blue quantum dot light emitting diodes(QLEDs),electron injection is insufficient,which would degrade device efficiency and stability.Herein,we employ chlorine passivated ZnO nanoparticles as electron transport layer to facilitate electron injection into QDs effectively.Moreover,it suppresses exciton quenching at the QD/ZnO interface by blocking charge transfer channel.As a result,the maximum external quantum efficiency of blue QLED was increased from 2.55%to 4.60%,and the operation lifetime of blue QLED was nearly 4 times longer than that of the control device.Our work indicates that election injection plays an important role in blue QLED efficiency and stability.展开更多
文摘A diamond-like carbon (DLC) film is deposited as an electron injection layer between the polymer light-emitting layer(MEH-PPV) and aluminum (Al) cathode electrode in polymer electroluminescence devices (PLEDs) using a radio frequency plasma deposition system. The source material of the DLC is n-butylamine. The devices consist of indium tin oxide (ITO)/MEH-PPV/DLC/Al. Electron injection properties are investigated through I-V characteristics,and the mechanism of electron injection enhancement due to a thin DLC layer has been studied. It is found that: (1) a DLC layer thinner than 1.0nm leads to a higher turn-on voltage and decreased electroluminescent (EL) efficiency; (2) a 5.0nm DLC layer significantly enhances the electron injection and results in the lowest turn-on voltage and the highest EL efficiency; (3) DLC layer that exceeds 5.0nm results in poor device performance;and(4) EL emission can hardly be detected when the layer exceeds 10.0nm. The properties of ITO/MEH-PPV/DLC/Al and ITO/MEH-PPV/LiF/Al are investigated comparatively.
文摘Organic light emitting diodes employing magnesium doped electron acceptor 3, 4, 9, 10 perylenetetracarboxylic dianhydride (Mg:PTCDA) as electron injection layer and silver as cathode were demonstrated. As compared to Mg : Ag cathode, the combination of the Mg : PTCDA layer and silver provided enhanced electron injection into tris (8- quinolinolato) aluminium. The device with 1 : 2 Mg : PTCDA and Ag showed an increase of about 12% in the maximum current efficiency, mainly due to the improved hole-electron balance, and an increase of about 28% in the maximum power efficiency, as compared to the control device using Mg : Ag cathode. The properties of Mg : PTCDA composites were studied as well.
基金supported by the National Natural Science Foundation of China under grant 41974188。
文摘Relativistic electron injections are one of the mechanisms of relativistic(≥0.5 MeV) electron enhancements in the Earth’s outer radiation belt. In this study, we present a statistical observation of 600 keV electron injections in the outer radiation belt by using data from the Van Allen Probes. On the basis of the characteristics of different injections, 600 keV electron injections in the outer radiation belt were divided into pulsed electron injections and nonpulsed electron injections. The 600 keV electron injections were observed at 4.5 < L <6.4 under the geomagnetic conditions of 450 nT < AE < 1,450 nT. An L of ~4.5 is an inward limit for 600 keV electron injections. Before the electron injections, a flux negative L shell gradient for ≤0.6 MeV electrons or low electron fluxes in the injected region were observed. For600 keV electron injections at different L shells, the source populations from the Earth’s plasma sheet were different. For 600 keV electron injections at higher L shells, the source populations were higher energy electrons(~200 keV at X ~–9 R_(E)), whereas the source populations for 600 keV electron injections at lower L shells were lower energy electrons(~80 keV at X ~–9 R_(E)). These results are important to further our understanding of electron injections and rapid enhancements of 600 keV electrons in the Earth’s outer radiation belt.
基金supported by the National Natural Science Foundation of China(Grant No.60906022)the Natural Science Foundation of Tianjin,China(Grant No.10JCYBJC01100)+2 种基金the Scientific Developing Foundation of Tianjin Education Commission,China(Grant No.2011ZD02)the Key Science and Technology Support Program of Tianjin,China(Grant No.14ZCZDGX00006)the National High Technology Research and Development Program of China(Grant No.2013AA014201)
文摘We investigate the electron injection effect of inserting a thin aluminum(Al) layer into cesium carbonate(Cs2CO3)injection layer. Two groups of organic light-emitting devices(OLEDs) are fabricated. For the first group of devices based on Alq3, we insert a thin Al layer of different thickness into Cs2CO3 injection layer, and the device's maximum current efficiency of 6.5 cd/A is obtained when the thickness of the thin Al layer is 0.4 nm. However, when the thickness of Al layer is 0.8 nm, the capacity of electron injection is the strongest. To validate the universality of this approach, then we fabricate another group of devices based on another blue emitting material. The maximum current efficiency of the device without and with a thin Al layer is 4.51 cd/A and 4.84 cd/A, respectively. Inserting a thin Al layer of an appropriate thickness into Cs2CO3 layer can result in the reduction of electron injection barrier, enhancement of the electron injection, and improvement of the performance of OLEDs. This can be attributed to the mechanism that thermally evaporated Cs2CO3 decomposes into cesium oxides, the thin Al layer reacts with cesium oxides to form Al–O–Cs complex, and the amount of the Al–O–Cs complex can be controlled by adjusting the thickness of the thin Al layer.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 20974101 and 21174135)
文摘We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su Schrieffer Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value work-function electrode. For polymer/electrode structures This means that the Schottky barrier is pinned for a small we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontneous electron transfer from electrodes to polymers.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 20974101 and 21174135)
文摘We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su–Schrieffer–Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value. This means that the Schottky barrier is pinned for a small work-function electrode. For polymer/electrode structures, we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontaneous electron transfer from electrodes to polymers.
文摘As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor accuracy, a feed-forward control strategy based on load combined with proportional-integral-differential (PID) control strategy was proposed, and a digital speed controller applied to the electrical control system was designed. The detailed control strategy of the controller was intro- duced. The hardware design for the controller and the key circuits of motor driving, current sampling and angular signal captu- ring were given, and software architecture was discussed. Combined with a gasoline generator set mounted with EFI system, the controller parameters were tuned and optimized empirically by hardware in loop and bench test methods. Test results show that the speed deviation of generator set is low and the control system is stable in steady state; In transient state the control system responses quickly, has high stability under mutation loads especially when suddenly apply and remove 100% load, the speed deviation is within 8% of reference speed and the transient time is less than 5 s, satisfying the ISO standard.
基金The author thank the HL-2A team for carrying out the experiments and Profs. D0NG Jiaqi,GA0 Qingdi,LI Jiquan and WANG Aike for benefit discussion and suggestion.Supported by the National Natural Science Foundation of China ( 10335060 and 10235010 )
文摘The improved energy confinement has been observed in many tokamaks with center pellet injection since 1980's. The pellet enhanced performance ( PEP ) was achieved with high power additional heating in JET and other large tokamaks. The mechanism of the PEP mode has been analyzed theoretically . The analysis shows that a few mechanisms are involved in the reduction of anomalous transport and the relative weight of these mechanisms depends on the experimental conditions. In this paper we report the pellet injection experiment results without auxiliary heating on HL-2A tokamak. Our works focus on the investigation of the electron heat transport in ohmic discharges with center pellet fuelling.
基金supported by the National Natural Science Foundation of China(Grant Nos.61905086,62174067,62175085)Science and Technology Development Planning of Jilin Province(Project Nos.20190101024JH,20200201296JC)+1 种基金the Hong Kong Scholars Program(Project No.XJ2020028)grants from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project Nos.11300418 and 11300419).
文摘Here,this work presents an air-stable ultrabright inverted organic lightemitting device(OLED)by using zinc ionchelated polyethylenimine(PEI)as electron injection layer.The zinc chelation is demonstrated to increase the conductivity of the PEI by three orders of magnitude and passivate the polar amine groups.With these physicochemical properties,the inverted OLED shows a record-high external quantum efficiency of 10.0% at a high brightness of 45,610 cd m^(-2) and can deliver a maximum brightness of 121,865 cd m^(-2).Besides,the inverted OLED is also demonstrated to possess an excellent air stability(humidity,35%)with a half-brightness operating time of 541 h@1000 cd m^(-2) without any protection nor encapsulation.
基金the Office of R&D,National Cheng Kung University,Taiwan
文摘The performance of polymer light emitting devices(PLEDs)based on polyvinyl carbazole(PVK)is improved by introducing a nanoscale interfacial thin layer,made of poly(ethylene oxide)(PEO),between the calcium cathode and the PVK emissive layer.It is believed that the PEO layer plays a key role in enhancing the device performance.In comparison to the device with Ca/Al as the cathode,the performance of the PLED with PEO/Ca/Al cathode,including the driving voltage,luminance efficiency is significantly improved.These improvements are attributed to the introduction of a thin layer of PEO that can lower the interfacial barrier and facilitate electron injection.
基金supported by the National Natural Science Foundation of China(Grant No.61376109)the Opening Project of National Key Laboratory of Science and Technology on Reliability Physics and Application Technology of Electrical Component,China(Grant No.ZHD201202)
文摘Although hot carriers induced degradation of NMOSFETs has been studied for decades, the role of hot electron in this process is still debated. In this paper, the additional substrate hot electrons have been intentionally injected into the oxide layer to analyze tile role of hot electron in hot carrier degradation. The enhanced degradation and the decreased time exponent appear with the injected hot electrons increasing, the degradation increases from 21.80% to 62.00% and the time exponent decreases from 0.59 to 0.27 with Vb decreasing from 0 V to -4 V, at the same time, the recovery also becomes remarkable and which strongly depends on the post stress gate bias Vg. Based on the experimental results, more unrecovered interface traps are created by the additional injected hot electron from the breaking Si-H bond, but the oxide trapped negative charges do not increase after a rapid recovery.
文摘Introduction: Mechanism of male androgenic alopecia (MAGA) is complex and leads to an excessive hair shedding and decreased hair density. Oral, topical, and injectable autologous treatments demonstrate ability to stimulate hair re-growth, but the response is suboptimal or plateaus off. Synthetic combination of the peptide complex and hyaluronic acid (P-HA) demonstrated hair regrowth in alopecia patients. Electronically-operated pneumatic injections (EPI) generate micro-trauma in the dermis and under wound-healing conditions may enhance regeneration effect of P-HA. Methods: Subjects seeking improvement of their male pattern hair loss (Hamilton-Norwood type 2-4) received the P-HA treatments through EPI. The course included 4 treatments every two weeks over the 8-week period. In 6 months, the hair growth was assessed comparative to baseline by global clinical photography and digital phototrichograms. The treatment safety and tolerability were documented through the whole study period. Results: Twelve men (30-45 years old) completed the treatment course with high tolerability and without adverse events. Post-treatment assessment of the previously bald areas showed improved coverage on the clinical photographs. The phototrichograms demonstrated statistically significant increase in terminal hair density by 36%, cumulative hair thickness by 37%, and follicular units by 20%;all contributing to a 38% increase in cumulated hair density (all p Conclusion: Electronic pneumatic injections are well tolerated and can be safely used for the needle-free administration of the peptide-hyaluronic acid combination in MAGA therapy. We achieved significant hair re-densification in the balding scalp. The exact role of the EPI-induced impact in the hair re-growth mechanism remains to be ascertained. .
基金This project is supported by the Commission of Science Technology and Industry for National Defense, China(No.MKPT-02-291).
文摘A direct injection low compression ratios diesel rotary engine is designed and studied to find the appropriate application of the electronic controlled high pressure common rail injection system. Current development focuses on the applied fuel injection and ignition strategies, especially concerning the combustion configurations of injectors, ignition source, and combustion chamber. The prototype engine, equipped with Bosch common rail system and high performance electronic control unit (ECU), is designed correspondingly. Studies show that the integration of a common rail injection system and the main and pilot duel injectors configurations, assisted with glow plug ignition device and flexible ECU, represents a promising approach to improve the potential of the low compression ratios diesel rotary engine. Currently the engine can run at 6 kr · min^-1 steadily and the power is about 68 kW/(4 kr ·min^- 1).
基金the National Natural Science Foundation of China(Grant Nos.12074142 and 11904122).
文摘We investigate theoretically the spectral shift of the high-order harmonic generation(HHG)in ZnO driven by a combined laser field by solving the two-band semiconductor Bloch equations(SBEs)in the velocity gauge.The combined laser field is synthesized by a fundamental laser pulse and its seventh-frequency laser pulse.When the seventh-frequency laser pulse is added to the rising or falling parts of the fundamental laser field,we find that the spectral blueshift or redshift appears,which is due to the unequal contribution of the rising and falling parts in the fundamental laser field to the harmonics.By analyzing the time-dependent conduction band population in k space,we found that,in addition to the tunneling ionization channel,there is also the resonant electron injection channels which is induced by the seventh-frequency laser pulse.The harmonics generated by the different channels show the spectral redshift or the spectral blueshift,respectively.Through analyzing the k-integrated transient conduction band population of the electrons from different channels,we found that if there is a certain delay in the process of the electron excitation,it will lead to the delay in the harmonic emission,which results in the spectral redshift of the harmonics.
文摘The on-resistance degradations of the p-type lateral extended drain MOS transistor (pLEDMOS) with thick gate oxide under different hot carrier stress conditions are different, which has been experimentally investigated. This difference results from the interface trap generation and the hot electron injection, and trapping into the thick gate oxide and field oxide of the pLEDMOS transistor. An improved method to reduce the on-resistance degradations is also presented, which uses the field oxide as the gate oxide instead of the thick gate oxide. The effects are analyzed with a MEDICI simulator.
基金The National Basic Research Program of China(973Program)(No.2007CB936300)the High Technology Research and Devel-opment Program of Jiangsu Province(No.BG2006033).
文摘A poly ( p-phenylenevinylene ) ( PPV ) alternating copolymer, poly [ ( 2, 5-diphenylene-1, 3, 4-oxadiazole )-4-4' - vinylene-alt-2-methoxy-5-( 2-ethylhexyloxy )-1, 4-phenylenevinylene] (oxa-MEHPV), is synthesized by Heck coupling reaction and characterized with UV-vis, Fourier transform infrared ( FT-IR ), ^1H-NMR and photoluminescence ( PL ) spectroscopy, oxa-MEHPV possesses an outstanding thermal stability and shows excellent solubility in common organic solvents such as dichloromethane, chloroform, toluene, and tetrahydrofuran(THF). The introduction of the electron-deficient 1, 3, 4-oxadiazole units into the MEH-PPV backbone also increases the electron affinities of the conjugated segment, which leads to the blue-shift of the maximum absorption wavelength and makes the polymer have a high optical band-gap energy, good electron-transporting stability and high PL quantum yield.
基金国家重点基础研究发展计划 ( No.G2 0 0 0 0 3 65 0 3 ) Motorola Digital DNA Laboratory资助项目~~
文摘Gate current for pMOSFETs is composed of direct tunneling current,channel hot hole,electron injection current,and highly energetic hot holes by secondary impact ionization.The device degradation under V g=V d/2 is mainly caused by the injection of hot electrons by primary impact ionization and hot holes by secondary impact ionization,and the device lifetime is assumed to be inversely proportional to the hot holes,which is able to surmount Si-SiO 2 barrier and be injected into the gate oxide.A new lifetime prediction model is proposed on the basis and validated to agree well with the experiment.
基金the Laboratory Open Fund of Beijing Smart-chip Microelectronics Technology Co.Ltd and the National Natural Science Foundation of China(Grant No.11690042)+1 种基金the Science Challenge Project,China(Grant Nos.TZ2018004 and 12035019)the National Major Scientific Research Instrument Projects,China(Grant No.61727804)。
文摘The performance degradation of gate-recessed metal–oxide–semiconductor high electron mobility transistor(MOSHEMT)is compared with that of conventional high electron mobility transistor(HEMT)under direct current(DC)stress,and the degradation mechanism is studied.Under the channel hot electron injection stress,the degradation of gate-recessed MOS-HEMT is more serious than that of conventional HEMT devices due to the combined effect of traps in the barrier layer,and that under the gate dielectric of the device.The threshold voltage of conventional HEMT shows a reduction under the gate electron injection stress,which is caused by the barrier layer traps trapping the injected electrons and releasing them into the channel.However,because of defects under gate dielectrics which can trap the electrons injected from gate and deplete part of the channel,the threshold voltage of gate-recessed MOS-HEMT first increases and then decreases as the conventional HEMT.The saturation phenomenon of threshold voltage degradation under high field stress verifies the existence of threshold voltage reduction effect caused by gate electron injection.
文摘Test results of reducing two stroke motorcycle emissions with new type carburettors and electronic fuel injection systems are presented. Analyses and comparison between different systems are discussed. The adoption of electronically controlled injection and corresponding electronic control technique is an effective measure of prolonged vitality to improve emissions from two stroke motorcycles. Suggestions about the strategic steps of China′s motorcycle emission control are proposed.
基金Project supported by the National Key R&D Program of China(Grant Nos.2016YFB0401702 and 2017YFE0120400)the National Natural Science Foundation of China(Grant Nos.62005114,62005115,and 61875082)+5 种基金Key-Area Research and Development Program of Guangdong Province,China(Grant Nos.2019B010925001 and 2019B010924001)Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting(Grant No.2017KSYS007)Natural Science Foundation of Guangdong Province,China(Grant No.2017B030306010)Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2019A1515110437)Shenzhen Peacock Team Project(Grant No.KQTD2016030111203005)High Level University Fund of Guangdong Province,China(Grant No.G02236004).
文摘In blue quantum dot light emitting diodes(QLEDs),electron injection is insufficient,which would degrade device efficiency and stability.Herein,we employ chlorine passivated ZnO nanoparticles as electron transport layer to facilitate electron injection into QDs effectively.Moreover,it suppresses exciton quenching at the QD/ZnO interface by blocking charge transfer channel.As a result,the maximum external quantum efficiency of blue QLED was increased from 2.55%to 4.60%,and the operation lifetime of blue QLED was nearly 4 times longer than that of the control device.Our work indicates that election injection plays an important role in blue QLED efficiency and stability.