The effects of irradiation of 1.0 MeV electrons on the n+-p GaAs middle cell of GalnP/GaAs/Ge triple-junction solar cells are investigated by temperature-dependent photoluminescence (PL) measurements in the 10-300K...The effects of irradiation of 1.0 MeV electrons on the n+-p GaAs middle cell of GalnP/GaAs/Ge triple-junction solar cells are investigated by temperature-dependent photoluminescence (PL) measurements in the 10-300K temperature range. The appearance of thermal quenching of the PL intensity with increasing temperature confirms the presence of a nonradiative recombination center in the cell after the electron irradiation, and the thermal activation energy of the center is determined using the Arrhenius plot of the PL intensity. Furthermore, by comparing the thermal activation and the ionization energies of the defects, the nonradiative recombination center in the n+ p GaAs middle cell acting as a primary defect is identified as the E5 electron trap located at Ec - 0.96 eV.展开更多
Within a Su-Schriffer-Heeger model modified to include electron-electron interaction and an external electric field, we investigate the dynamics of oppositely charged polarons in a polymer chain in the presence of bot...Within a Su-Schriffer-Heeger model modified to include electron-electron interaction and an external electric field, we investigate the dynamics of oppositely charged polarons in a polymer chain in the presence of both electron-phonon and electron-electron interactions under the influence of an external electric field. We adopt a multi-configurational time-dependent Hartree-Fock method for the time-dependent Schrodinger equation and the Newtonian equation of motion for a lattice. Our results show that the on-site Coulomb interaction is of fundamental importance and favors the recombination between the pairs of polarons, and the yield of excitons depends crucially on the strength of the on-site Coulomb interaction U. Furthermore, the influence of the nearest neighbor interaction V is also discussed.展开更多
Perovskite Solar Cells(PSCs)have attracted considerable attention because of their unique features and high efficiency.However,the stability of perovskite solar cells remains to be improved.In this study,we modified t...Perovskite Solar Cells(PSCs)have attracted considerable attention because of their unique features and high efficiency.However,the stability of perovskite solar cells remains to be improved.In this study,we modified the TiO_(2)Electron Transport Layer(ETL)interface with PbCl_(2).The efficiency of the perovskite solar cells with carbon electrodes increased from 11.28%to 13.34%,and their stability obviously improved.The addition of PbCl_(2)had no effect on the morphology,crystal structure,and absorption property of the perovskite absorber layer.However,it affected the band energy level alignment of the solar cells and accelerated the electron extraction and transfer at the interface between the perovskite layer and the ETL,thus enhancing the overall photovoltaic performance.The interfacial modification of ETL with PbCl_(2)is a promising way for the potential commercialization of low-cost carbon electrode-based perovskite solar cells.展开更多
In the present investigation,a new composite nanostructured photoanodes were prepared using TiO_2 nanotubes(TNTs) with TiO_2 nanoparticles(TNPs).TNPs were synthesized by sol-gel method,and TNTs were prepared throu...In the present investigation,a new composite nanostructured photoanodes were prepared using TiO_2 nanotubes(TNTs) with TiO_2 nanoparticles(TNPs).TNPs were synthesized by sol-gel method,and TNTs were prepared through alkali hydrothermal method.Dye-sensitized solar cells(DSSCs) were fabricated with different photoanodes comprising of various ratios of TNTs + TNPs,synthetic indigo dye as photosensitizer,PMII(l-propyl-3-methylimidazolium iodide) as ionic liquid electrolyte and cobalt sulfide as counter electrode.The structures and morphologies of TNPs and TNTs were analyzed through X-ray diffractometer,transmission electron microscope and scanning electron microscopes.The results of the investigation showed that the DSSC-4 made with composite photoanode structure(TNTs/TNPs)(90% of TNPs + 10% of TNTs) had improved photocurrent efficiency(2.11%) than pure TNPs(1.00%) and TNT film(0.78%).Electrochemical impedance spectra revealed that the composite TNTs/TNPs film-based DSSCs possessed the lowest charge-transfer resistances and longest electron lifetime.Hence,it could be concluded that the composite TNTs/TNPs photoanode facilitates the charge transport rate and enhances the efficiencies of DSSCs.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11675020,11375028,11075018 and 10675023
文摘The effects of irradiation of 1.0 MeV electrons on the n+-p GaAs middle cell of GalnP/GaAs/Ge triple-junction solar cells are investigated by temperature-dependent photoluminescence (PL) measurements in the 10-300K temperature range. The appearance of thermal quenching of the PL intensity with increasing temperature confirms the presence of a nonradiative recombination center in the cell after the electron irradiation, and the thermal activation energy of the center is determined using the Arrhenius plot of the PL intensity. Furthermore, by comparing the thermal activation and the ionization energies of the defects, the nonradiative recombination center in the n+ p GaAs middle cell acting as a primary defect is identified as the E5 electron trap located at Ec - 0.96 eV.
基金Supported by the National Natural Science Foundation of China under Grant No 11474218
文摘Within a Su-Schriffer-Heeger model modified to include electron-electron interaction and an external electric field, we investigate the dynamics of oppositely charged polarons in a polymer chain in the presence of both electron-phonon and electron-electron interactions under the influence of an external electric field. We adopt a multi-configurational time-dependent Hartree-Fock method for the time-dependent Schrodinger equation and the Newtonian equation of motion for a lattice. Our results show that the on-site Coulomb interaction is of fundamental importance and favors the recombination between the pairs of polarons, and the yield of excitons depends crucially on the strength of the on-site Coulomb interaction U. Furthermore, the influence of the nearest neighbor interaction V is also discussed.
基金supported by the National Natural Science Foundation of China(Nos.61875186,61975196,and 61674140)Chinese Academy of Sciences(CAS)The World Academy of Sciences(TWAS)(CASTWAS)scholarship。
文摘Perovskite Solar Cells(PSCs)have attracted considerable attention because of their unique features and high efficiency.However,the stability of perovskite solar cells remains to be improved.In this study,we modified the TiO_(2)Electron Transport Layer(ETL)interface with PbCl_(2).The efficiency of the perovskite solar cells with carbon electrodes increased from 11.28%to 13.34%,and their stability obviously improved.The addition of PbCl_(2)had no effect on the morphology,crystal structure,and absorption property of the perovskite absorber layer.However,it affected the band energy level alignment of the solar cells and accelerated the electron extraction and transfer at the interface between the perovskite layer and the ETL,thus enhancing the overall photovoltaic performance.The interfacial modification of ETL with PbCl_(2)is a promising way for the potential commercialization of low-cost carbon electrode-based perovskite solar cells.
文摘In the present investigation,a new composite nanostructured photoanodes were prepared using TiO_2 nanotubes(TNTs) with TiO_2 nanoparticles(TNPs).TNPs were synthesized by sol-gel method,and TNTs were prepared through alkali hydrothermal method.Dye-sensitized solar cells(DSSCs) were fabricated with different photoanodes comprising of various ratios of TNTs + TNPs,synthetic indigo dye as photosensitizer,PMII(l-propyl-3-methylimidazolium iodide) as ionic liquid electrolyte and cobalt sulfide as counter electrode.The structures and morphologies of TNPs and TNTs were analyzed through X-ray diffractometer,transmission electron microscope and scanning electron microscopes.The results of the investigation showed that the DSSC-4 made with composite photoanode structure(TNTs/TNPs)(90% of TNPs + 10% of TNTs) had improved photocurrent efficiency(2.11%) than pure TNPs(1.00%) and TNT film(0.78%).Electrochemical impedance spectra revealed that the composite TNTs/TNPs film-based DSSCs possessed the lowest charge-transfer resistances and longest electron lifetime.Hence,it could be concluded that the composite TNTs/TNPs photoanode facilitates the charge transport rate and enhances the efficiencies of DSSCs.