Silicon crystal-facet-dependent nanostructures have been successfully fabricated on a (100)-oriented silicon-oninsulator wafer using electron-beam lithography and the silicon anisotropic wet etching technique. This ...Silicon crystal-facet-dependent nanostructures have been successfully fabricated on a (100)-oriented silicon-oninsulator wafer using electron-beam lithography and the silicon anisotropic wet etching technique. This technique takes advantage of the large difference in etching properties for different crystallographic planes in alkaline solution. The minimum size of the trapezoidal top for those Si nanostructures can be reduced to less than 10nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations indicate that the etched nanostructures have controllable shapes and smooth surfaces.展开更多
A new method for determining proximity parameters α,β ,and η in electron beam lithography is introduced on the assumption that the point exposure spread function is composed of two Gaussians.A single line i...A new method for determining proximity parameters α,β ,and η in electron beam lithography is introduced on the assumption that the point exposure spread function is composed of two Gaussians.A single line is used as test pattern to determine proximity effect parameters and the normalization approach is adopted in experimental data transaction in order to eliminate the need of measuring exposure clearing dose of the resist.Furthermore,the parameters acquired by this method are successfully used for proximity effect correction in electron beam lithography on the same experimental conditions.展开更多
The field of metasurface research has rapidly developed in the past decade.Electron-beam lithography(EBL)is an excellent tool used for rapid prototyping of metasurfaces.However,Gaussian-beam EBL generally struggles wi...The field of metasurface research has rapidly developed in the past decade.Electron-beam lithography(EBL)is an excellent tool used for rapid prototyping of metasurfaces.However,Gaussian-beam EBL generally struggles with low throughput.In conjunction with the recent rise of interest in metasurfaces made of low-index dielectric materials,we propose in this study the use of a relatively unexplored chemically amplified resist,SU-8 with EBL,as a method for rapid prototyping of low-index metasurfaces.We demonstrate the use of SU-8 grating on silicon for cost-efficient fabrication of an all-dielectric multilevel security print for anti-counterfeiting purposes,which encrypt different optical information with different light illumination conditions,namely,bright-field reflection,dark-field reflection,and cross-polarized reflection.The large-scale print(1 mm^(2))could be exposed in a relatively short time(~11 min)due to the ultrahigh sensitivity of the resist,while the feature size of~200 nm was maintained,demonstrating that SU-8 EBL resist serves as a good candidate for rapid prototyping of metasurface designs.Our results could find applications in the general area of increasing EBL patterning speed for a variety of other devices and structures.展开更多
Extreme ultraviolet(EUV)lithography with high numerical aperture(NA)is a future technology to manufacture the integrated circuit in sub-nanometer dimension.Meanwhile,source mask co-optimization(SMO)is an extensively u...Extreme ultraviolet(EUV)lithography with high numerical aperture(NA)is a future technology to manufacture the integrated circuit in sub-nanometer dimension.Meanwhile,source mask co-optimization(SMO)is an extensively used approach for advanced lithography process beyond 28 nm technology node.This work proposes a novel SMO method to improve the image fidelity of high-NA EUV lithography system.A fast high-NA EUV lithography imaging model is established first,which includes the effects of mask three-dimensional structure and anamorphic magnification.Then,this paper develops an efficient SMO method that combines the gradient-based mask optimization algorithm and the compressivesensing-based source optimization algorithm.A mask rule check(MRC)process is further proposed to simplify the optimized mask pattern.Results illustrate that the proposed SMO method can significantly reduce the lithography patterning error,and maintain high computational efficiency.展开更多
Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,...Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,introducing electrical variation among different RRAM devices.In this work,an optical physical verification methodology for the RRAM array is developed,and the effects of different layout parameters on important electrical characteristics are systematically investigated.The results indicate that the RRAM devices can be categorized into three clusters according to their locations and lithography environments.The read resistance is more sensitive to the locations in the array(~30%)than SET/RESET voltage(<10%).The increase in the RRAM device length and the application of the optical proximity correction technique can help to reduce the variation to less than 10%,whereas it reduces RRAM read resistance by 4×,resulting in a higher power and area consumption.As such,we provide design guidelines to minimize the electrical variation of RRAM arrays due to the lithography process.展开更多
Electron beam lithography(EBL)involves the transfer of a pattern onto the surface of a substrate byfirst scanning a thin layer of organicfilm(called resist)on the surface by a tightly focused and precisely controlled el...Electron beam lithography(EBL)involves the transfer of a pattern onto the surface of a substrate byfirst scanning a thin layer of organicfilm(called resist)on the surface by a tightly focused and precisely controlled electron beam(exposure)and then selectively removing the exposed or nonexposed regions of the resist in a solvent(developing).It is widely used for fabrication of integrated cir-cuits,mask manufacturing,photoelectric device processing,and otherfields.The key to drawing circular patterns by EBL is the graphics production and control.In an EBL system,an embedded processor calculates and generates the trajectory coordinates for movement of the electron beam,and outputs the corresponding voltage signal through a digital-to-analog converter(DAC)to control a deflector that changes the position of the electron beam.Through this procedure,it is possible to guarantee the accuracy and real-time con-trol of electron beam scanning deflection.Existing EBL systems mostly use the method of polygonal approximation to expose circles.A circle is divided into several polygons,and the smaller the segmentation,the higher is the precision of the splicing circle.However,owing to the need to generate and scan each polygon separately,an increase in the number of segments will lead to a decrease in the overall lithography speed.In this paper,based on Bresenham’s circle algorithm and exploiting the capabilities of afield-programmable gate array and DAC,an improved real-time circle-producing algorithm is designed for EBL.The algorithm can directly generate cir-cular graphics coordinates such as those for a single circle,solid circle,solid ring,or concentric ring,and is able to effectively realizes deflection and scanning of the electron beam for circular graphics lithography.Compared with the polygonal approximation method,the improved algorithm exhibits improved precision and speed.At the same time,the point generation strategy is optimized to solve the blank pixel and pseudo-pixel problems that arise with Bresenham’s circle algorithm.A complete electron beam deflection system is established to carry out lithography experiments,the results of which show that the error between the exposure results and the preset pat-terns is at the nanometer level,indicating that the improved algorithm meets the requirements for real-time control and high precision of EBL.展开更多
We present a method for submicron fabrication of flexible,thin-film structures fully encapsulated in biocompatible polymer poly(chloro-p-xylylene)(Parylene C)that improves feature size and resolution by an order of ma...We present a method for submicron fabrication of flexible,thin-film structures fully encapsulated in biocompatible polymer poly(chloro-p-xylylene)(Parylene C)that improves feature size and resolution by an order of magnitude compared with prior work.We achieved critical dimensions as small as 250 nm by adapting electron beam lithography for use on vapor deposited Parylene-coated substrates and fabricated encapsulated metal structures,including conducting traces,serpentine resistors,and nano-patterned electrodes.Structures were probed electrically and mechanically demonstrating robust performance even under flexion or torsion.The developed fabrication process for electron beam lithography on Parylene-coated substrates and characterization of the resulting structures are presented in addition to a discussion of the challenges of applying electron beam lithography to polymers.As an application of the technique,a Parylene-based neural probe prototype was fabricated with 32 recording sites patterned along a 2 mm long shank,an electrode density surpassing any prior polymer probe.展开更多
Chromium atom photolithography gratings are a promising technology for the development of nanoscale length standard substances due to their high accuracy,uniformity,and consistency.However,the inherent difference betw...Chromium atom photolithography gratings are a promising technology for the development of nanoscale length standard substances due to their high accuracy,uniformity,and consistency.However,the inherent difference between the interaction of positive and negative frequency detuning standing wave field and the atoms can cause a difference in the adjacent peak-to-valley heights of the grating in positive and negative frequency detuning chromium atom lithography,which greatly reduces its accuracy.In this study,we performed a controlled variable growth simulation using the semi-classical theoretical model and Monte Carlo method with trajectory tracking and ballistic deposition methods to investigate the influence of key experimental parameters on the surface growth process of positive and negative frequency detuning atomic lithography gratings.We established a theoretical model based on simulation results and summarized empirical equations to guide the selection of experimental parameters.Our simulations achieved uniform positive and negative frequency detuning atomic lithography gratings with a period of 1/4 of the wavelength corresponding to the atomic transition frequency,and adjacent peak-to-valley heights differing by no more than 2 nm,providing an important theoretical reference for the controllable fabrication of these gratings.展开更多
This paper provides insight into the application of electron-beam welding in pellet mold preparation,highlighting the importance of the combination of electron-beam welding and pellet mold preparation in the fields of...This paper provides insight into the application of electron-beam welding in pellet mold preparation,highlighting the importance of the combination of electron-beam welding and pellet mold preparation in the fields of microstructure joining and micro-and nanostructure preparation.Precise material joining and microstructure fabrication can be achieved by the precise control of electron-beam welding and the shape adjustment of pellet molds.These applications hold significant potential in the modern industrial field,providing robust support for the development of new materials and the growth of the petrochemical industry.This paper asserts that in the future,the ongoing development of electron-beam welding and pelletizing template technology will unlock new possibilities in the field of petrochemicals,fostering progress in science and technology.展开更多
This paper provides an in-depth discussion of the joint strength of electron beam welding of dissimilar materials.The effect of welding parameters and material properties on the joint strength was analyzed,and an argu...This paper provides an in-depth discussion of the joint strength of electron beam welding of dissimilar materials.The effect of welding parameters and material properties on the joint strength was analyzed,and an argument for the optimal parameter combination is presented.Electron-beam welding technology offers several advantages,including high energy density and the ability to create fine weld seams.However,it also presents certain challenges,such as the complexity of welding parameters and the potential generation of brittle phases.The analysis conducted in this paper holds significant importance in enhancing the quality and efficiency of dissimilar material welding processes.展开更多
Welding joint of GH4169 alloy with a good formation was obtained. No macroscopic defects occurred in the joint. The weld had mainly a dendritic structure; the base metal was a solid solution of Ni, Cr, and Fe, and the...Welding joint of GH4169 alloy with a good formation was obtained. No macroscopic defects occurred in the joint. The weld had mainly a dendritic structure; the base metal was a solid solution of Ni, Cr, and Fe, and the strengthening-phase particles such as Ni3Nb were dispersively distributed along the grain boundary. The average tensile strength of the joint reached 743.7 MPa, and the Vickers hardness of the weld exceeded HV 300. Because of the segregation of the low-melting compound Ni3Nb at the grain boundary of the fusion zone, liquid cracks tended to occur as a result of welding stress. The formation of liquid cracks was inhibited by adding an alloying element, Mn, to the welding bath, because Mn diffused to the fusion zone and the high-melting phase Mn2Nb formed, and thus the overall properties of the joint were improved.展开更多
Optical proximity correction (OPC) systems require an accurate and fast way to predict how patterns will be transferred to the wafer.Based on Gabor's 'reduction to principal waves',a partially coherent ima...Optical proximity correction (OPC) systems require an accurate and fast way to predict how patterns will be transferred to the wafer.Based on Gabor's 'reduction to principal waves',a partially coherent imaging system can be represented as a superposition of coherent imaging systems,so an accurate and fast sparse aerial image intensity calculation algorithm for lithography simulation is presented based on convolution kernels,which also include simulating the lateral diffusion and some mask processing effects via Gaussian filter.The simplicity of this model leads to substantial computational and analytical benefits.Efficiency of this method is also shown through simulation results.展开更多
文摘Silicon crystal-facet-dependent nanostructures have been successfully fabricated on a (100)-oriented silicon-oninsulator wafer using electron-beam lithography and the silicon anisotropic wet etching technique. This technique takes advantage of the large difference in etching properties for different crystallographic planes in alkaline solution. The minimum size of the trapezoidal top for those Si nanostructures can be reduced to less than 10nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations indicate that the etched nanostructures have controllable shapes and smooth surfaces.
文摘A new method for determining proximity parameters α,β ,and η in electron beam lithography is introduced on the assumption that the point exposure spread function is composed of two Gaussians.A single line is used as test pattern to determine proximity effect parameters and the normalization approach is adopted in experimental data transaction in order to eliminate the need of measuring exposure clearing dose of the resist.Furthermore,the parameters acquired by this method are successfully used for proximity effect correction in electron beam lithography on the same experimental conditions.
基金National Research Foundation Singapore(NRF-CRP20-2017-0004,NRF-NRFI06-2020-0005)。
文摘The field of metasurface research has rapidly developed in the past decade.Electron-beam lithography(EBL)is an excellent tool used for rapid prototyping of metasurfaces.However,Gaussian-beam EBL generally struggles with low throughput.In conjunction with the recent rise of interest in metasurfaces made of low-index dielectric materials,we propose in this study the use of a relatively unexplored chemically amplified resist,SU-8 with EBL,as a method for rapid prototyping of low-index metasurfaces.We demonstrate the use of SU-8 grating on silicon for cost-efficient fabrication of an all-dielectric multilevel security print for anti-counterfeiting purposes,which encrypt different optical information with different light illumination conditions,namely,bright-field reflection,dark-field reflection,and cross-polarized reflection.The large-scale print(1 mm^(2))could be exposed in a relatively short time(~11 min)due to the ultrahigh sensitivity of the resist,while the feature size of~200 nm was maintained,demonstrating that SU-8 EBL resist serves as a good candidate for rapid prototyping of metasurface designs.Our results could find applications in the general area of increasing EBL patterning speed for a variety of other devices and structures.
基金financially supported by National Natural Science Foundation of China (No. 62274181,62204257 and 62374016)Chinese Ministry of Science and Technology (No. 2019YFB2205005)+4 种基金Guangdong Province Research and Development Program in Key Fields (No. 2021B0101280002)the support from Youth Innovation Promotion Association Chinese Academy of Sciences (No. 2021115)Beijing Institute of ElectronicsBeijing Association for Science and Technology as well,the support from University of Chinese Academy of Sciences (No. 118900M032)China Fundamental Research Funds for the Central Universities (No. E2ET3801)
文摘Extreme ultraviolet(EUV)lithography with high numerical aperture(NA)is a future technology to manufacture the integrated circuit in sub-nanometer dimension.Meanwhile,source mask co-optimization(SMO)is an extensively used approach for advanced lithography process beyond 28 nm technology node.This work proposes a novel SMO method to improve the image fidelity of high-NA EUV lithography system.A fast high-NA EUV lithography imaging model is established first,which includes the effects of mask three-dimensional structure and anamorphic magnification.Then,this paper develops an efficient SMO method that combines the gradient-based mask optimization algorithm and the compressivesensing-based source optimization algorithm.A mask rule check(MRC)process is further proposed to simplify the optimized mask pattern.Results illustrate that the proposed SMO method can significantly reduce the lithography patterning error,and maintain high computational efficiency.
基金supported in part by the Open Fund of State Key Laboratory of Integrated Chips and Systems,Fudan Universityin part by the National Science Foundation of China under Grant No.62304133 and No.62350610271.
文摘Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,introducing electrical variation among different RRAM devices.In this work,an optical physical verification methodology for the RRAM array is developed,and the effects of different layout parameters on important electrical characteristics are systematically investigated.The results indicate that the RRAM devices can be categorized into three clusters according to their locations and lithography environments.The read resistance is more sensitive to the locations in the array(~30%)than SET/RESET voltage(<10%).The increase in the RRAM device length and the application of the optical proximity correction technique can help to reduce the variation to less than 10%,whereas it reduces RRAM read resistance by 4×,resulting in a higher power and area consumption.As such,we provide design guidelines to minimize the electrical variation of RRAM arrays due to the lithography process.
基金supported by the Focused Ion Beam/Electron Beam Double Beam Microscopy(Grant No.2021YFF0704702).
文摘Electron beam lithography(EBL)involves the transfer of a pattern onto the surface of a substrate byfirst scanning a thin layer of organicfilm(called resist)on the surface by a tightly focused and precisely controlled electron beam(exposure)and then selectively removing the exposed or nonexposed regions of the resist in a solvent(developing).It is widely used for fabrication of integrated cir-cuits,mask manufacturing,photoelectric device processing,and otherfields.The key to drawing circular patterns by EBL is the graphics production and control.In an EBL system,an embedded processor calculates and generates the trajectory coordinates for movement of the electron beam,and outputs the corresponding voltage signal through a digital-to-analog converter(DAC)to control a deflector that changes the position of the electron beam.Through this procedure,it is possible to guarantee the accuracy and real-time con-trol of electron beam scanning deflection.Existing EBL systems mostly use the method of polygonal approximation to expose circles.A circle is divided into several polygons,and the smaller the segmentation,the higher is the precision of the splicing circle.However,owing to the need to generate and scan each polygon separately,an increase in the number of segments will lead to a decrease in the overall lithography speed.In this paper,based on Bresenham’s circle algorithm and exploiting the capabilities of afield-programmable gate array and DAC,an improved real-time circle-producing algorithm is designed for EBL.The algorithm can directly generate cir-cular graphics coordinates such as those for a single circle,solid circle,solid ring,or concentric ring,and is able to effectively realizes deflection and scanning of the electron beam for circular graphics lithography.Compared with the polygonal approximation method,the improved algorithm exhibits improved precision and speed.At the same time,the point generation strategy is optimized to solve the blank pixel and pseudo-pixel problems that arise with Bresenham’s circle algorithm.A complete electron beam deflection system is established to carry out lithography experiments,the results of which show that the error between the exposure results and the preset pat-terns is at the nanometer level,indicating that the improved algorithm meets the requirements for real-time control and high precision of EBL.
基金funded by a Postdoctoral Scholar Research Grant from the Office of the Provost at USC.
文摘We present a method for submicron fabrication of flexible,thin-film structures fully encapsulated in biocompatible polymer poly(chloro-p-xylylene)(Parylene C)that improves feature size and resolution by an order of magnitude compared with prior work.We achieved critical dimensions as small as 250 nm by adapting electron beam lithography for use on vapor deposited Parylene-coated substrates and fabricated encapsulated metal structures,including conducting traces,serpentine resistors,and nano-patterned electrodes.Structures were probed electrically and mechanically demonstrating robust performance even under flexion or torsion.The developed fabrication process for electron beam lithography on Parylene-coated substrates and characterization of the resulting structures are presented in addition to a discussion of the challenges of applying electron beam lithography to polymers.As an application of the technique,a Parylene-based neural probe prototype was fabricated with 32 recording sites patterned along a 2 mm long shank,an electrode density surpassing any prior polymer probe.
基金Project supported by the National Natural Science Foundation of China(Grant No.62075165)the National Key Research and Development Program of China(Grant Nos.2022YFF0607600 and 2022YFF0605502)+3 种基金the Special Development Funds for Major Projects of Shanghai Zhangjiang National Independent Innovation Demonstration Zone(Grant No.ZJ2021ZD008)the Shanghai Natural Science Foundation(Grant No.21ZR1483100)the Shanghai Academic/Technology Research Leader(Grant No.21XD1425000)the Opening Fund of Shanghai Key Laboratory of Online Detection and Control Technology(Grant No.ZX2020101)。
文摘Chromium atom photolithography gratings are a promising technology for the development of nanoscale length standard substances due to their high accuracy,uniformity,and consistency.However,the inherent difference between the interaction of positive and negative frequency detuning standing wave field and the atoms can cause a difference in the adjacent peak-to-valley heights of the grating in positive and negative frequency detuning chromium atom lithography,which greatly reduces its accuracy.In this study,we performed a controlled variable growth simulation using the semi-classical theoretical model and Monte Carlo method with trajectory tracking and ballistic deposition methods to investigate the influence of key experimental parameters on the surface growth process of positive and negative frequency detuning atomic lithography gratings.We established a theoretical model based on simulation results and summarized empirical equations to guide the selection of experimental parameters.Our simulations achieved uniform positive and negative frequency detuning atomic lithography gratings with a period of 1/4 of the wavelength corresponding to the atomic transition frequency,and adjacent peak-to-valley heights differing by no more than 2 nm,providing an important theoretical reference for the controllable fabrication of these gratings.
文摘This paper provides insight into the application of electron-beam welding in pellet mold preparation,highlighting the importance of the combination of electron-beam welding and pellet mold preparation in the fields of microstructure joining and micro-and nanostructure preparation.Precise material joining and microstructure fabrication can be achieved by the precise control of electron-beam welding and the shape adjustment of pellet molds.These applications hold significant potential in the modern industrial field,providing robust support for the development of new materials and the growth of the petrochemical industry.This paper asserts that in the future,the ongoing development of electron-beam welding and pelletizing template technology will unlock new possibilities in the field of petrochemicals,fostering progress in science and technology.
文摘This paper provides an in-depth discussion of the joint strength of electron beam welding of dissimilar materials.The effect of welding parameters and material properties on the joint strength was analyzed,and an argument for the optimal parameter combination is presented.Electron-beam welding technology offers several advantages,including high energy density and the ability to create fine weld seams.However,it also presents certain challenges,such as the complexity of welding parameters and the potential generation of brittle phases.The analysis conducted in this paper holds significant importance in enhancing the quality and efficiency of dissimilar material welding processes.
基金Project(HIT.NSRIF.2014007)supported by the Fundamental Research Funds for the Central Universities,China
文摘Welding joint of GH4169 alloy with a good formation was obtained. No macroscopic defects occurred in the joint. The weld had mainly a dendritic structure; the base metal was a solid solution of Ni, Cr, and Fe, and the strengthening-phase particles such as Ni3Nb were dispersively distributed along the grain boundary. The average tensile strength of the joint reached 743.7 MPa, and the Vickers hardness of the weld exceeded HV 300. Because of the segregation of the low-melting compound Ni3Nb at the grain boundary of the fusion zone, liquid cracks tended to occur as a result of welding stress. The formation of liquid cracks was inhibited by adding an alloying element, Mn, to the welding bath, because Mn diffused to the fusion zone and the high-melting phase Mn2Nb formed, and thus the overall properties of the joint were improved.
文摘Optical proximity correction (OPC) systems require an accurate and fast way to predict how patterns will be transferred to the wafer.Based on Gabor's 'reduction to principal waves',a partially coherent imaging system can be represented as a superposition of coherent imaging systems,so an accurate and fast sparse aerial image intensity calculation algorithm for lithography simulation is presented based on convolution kernels,which also include simulating the lateral diffusion and some mask processing effects via Gaussian filter.The simplicity of this model leads to substantial computational and analytical benefits.Efficiency of this method is also shown through simulation results.