Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitud...Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.展开更多
Mainlobe jamming(MLJ)brings a big challenge for radar target detection,tracking,and identification.The suppression of MLJ is a hard task and an open problem in the electronic counter-counter measures(ECCM)field.Target...Mainlobe jamming(MLJ)brings a big challenge for radar target detection,tracking,and identification.The suppression of MLJ is a hard task and an open problem in the electronic counter-counter measures(ECCM)field.Target parameters and target direction estimation is difficult in radar MLJ.A target parameter estimation method via atom-reconstruction in radar MLJ is proposed in this paper.The proposed method can suppress the MLJ and simultaneously provide high estimation accuracy of target range and angle.Precisely,the eigen-projection matrix processing(EMP)algorithm is adopted to suppress the MLJ,and the target range is estimated effectively through the beamforming and pulse compression.Then the target angle can be effectively estimated by the atom-reconstruction method.Without any prior knowledge,the MLJ can be canceled,and the angle estimation accuracy is well preserved.Furthermore,the proposed method does not have strict requirement for radar array construction,and it can be applied for linear array and planar array.Moreover,the proposed method can effectively estimate the target azimuth and elevation simultaneously when the target azimuth(or elevation)equals to the jamming azimuth(or elevation),because the MLJ is suppressed in spatial plane dimension.展开更多
The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with se...The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with self-defense electronic jamming, a decision-making model with self-defense electronic jamming based on the discrete dynamic Bayesian network is established. Then jamming decision inferences by the aid of the algorithm of discrete dynamic Bayesian network are carried on. The simulating result shows that this method is able to synthesize different targets which are not predominant. In this way, various features at the same time, as well as the same feature appearing at different time complement mutually; in addition, the accuracy and reliability of electronic jamming decision making are enhanced significantly.展开更多
The combat survivability is an essential factor to be considered in the development of recent military aircraft. Radar stealth and onboard electronic attack are two major techniques for the reduction of aircraft susce...The combat survivability is an essential factor to be considered in the development of recent military aircraft. Radar stealth and onboard electronic attack are two major techniques for the reduction of aircraft susceptibility. A tactical scenario for a strike mission is presented. The effect of aircraft radar cross section on the detection probability of a threat radar, as well as that of onboard jammer, are investigated. The guidance errors of radar guided surface to air missile and anti aircraft artillery, which are disturbed by radar cross section reduction or jammer radiated power and both of them are determined. The probability of aircraft kill given a single shot is calculated and finally the sortie survivability of an attack aircraft in a supposed hostile thread environment worked out. It is demonstrated that the survivability of a combat aircraft will be greatly enhanced by the combined radar stealth and onboard electronic attack, and the evaluation metho dology is effective and applicable.展开更多
This paper proposes a suppression method of the deceptive false target(FT) produced by digital radio frequency memory(DRFM) in a multistatic radar system. The simulated deceptive false targets from DRFM cannot be easi...This paper proposes a suppression method of the deceptive false target(FT) produced by digital radio frequency memory(DRFM) in a multistatic radar system. The simulated deceptive false targets from DRFM cannot be easily discriminated and suppressed with traditional radar systems. Therefore, multistatic radar has attracted considerable interest as it provides improved performance against deception jamming due to several separated receivers. This paper first investigates the received signal model in the presence of multiple false targets in all receivers of the multistatic radar. Then, obtain the propagation time delays of the false targets based on the cross-correlation test of the received signals in different receivers. In doing so, local-density-based spatial clustering of applications with noise(LDBSCAN) is proposed to discriminate the FTs from the physical targets(PTs) after compensating the FTs time delays, where the FTs are approximately coincident with one position, while PTs possess small dispersion.Numerical simulations are carried out to demonstrate the feasibility and validness of the proposed method.展开更多
The principle of uniform DFT filter bank is presented. Exploiting poly-phase structure, radar jamming system samples the intercepted wideband radar signals through analysis filter bank by different channels and linear...The principle of uniform DFT filter bank is presented. Exploiting poly-phase structure, radar jamming system samples the intercepted wideband radar signals through analysis filter bank by different channels and linearly modulates the intercepted radar signal according to the theory of signal and system, then synthesizes the jamming signal through the synthesis filter hank. The method merely requires lower sample frequency, reduces the computational complexity and the data quantity to be processed. The un-ideal filter's influence to the result of signals processing is analyzed by simulating the match filter in radar jamming system.展开更多
A deceptive pull-off jamming method to terminal guidance radar is put forward in this paper.The design rules about the important jamming parameters are discussed in detail,including the number of the decoy targets in ...A deceptive pull-off jamming method to terminal guidance radar is put forward in this paper.The design rules about the important jamming parameters are discussed in detail,including the number of the decoy targets in range dimension,the velocity of the range gate pull-off,and the number of the decoy targets in velocity dimension and the velocity of the Doppler frequency pull-off.Also,the steps to design these parameters are brought out.The rules and design procedure discussed in this paper have important meaning for the choice of the reasonable jamming parameters in the practical applications,which can help to obtain good jamming effect.展开更多
This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed...This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.展开更多
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t...Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.展开更多
The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In t...The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case.展开更多
A modified chaff jamming recognition method of radar is investigated using grey relational analysis( GRA) based on the difference in echo correlation characteristics between a complex rigid target and chaff cloud in...A modified chaff jamming recognition method of radar is investigated using grey relational analysis( GRA) based on the difference in echo correlation characteristics between a complex rigid target and chaff cloud in time domain. Slice method( SM),a novel modeling approach,is proposed to construct an electromagnetic scattering model of chaff cloud in a scenario with slowly moving platform that is targeted. The diffusion characteristics and echo characteristics of the chaff cloud are analyzed. The GRA of a real target and chaff cloud shows that the adjacent return waves have a good correlation for the target but a weak correlation for chaff cloud. Since the correlation degree of chaff cloud's echo is far lower than that of a complex rigid target's,the chaff jamming can be identified by setting a reasonable threshold. Simulation results are presented to verify the effectiveness of this method.展开更多
A simple generation approach for chaotic sequences with Gauss probability distribution is proposed. Theoretical analysis and simulation based on Logistic chaotic model show that the approach is feasible and effective....A simple generation approach for chaotic sequences with Gauss probability distribution is proposed. Theoretical analysis and simulation based on Logistic chaotic model show that the approach is feasible and effective. The distribution characteristics of the novel chaotic sequence are comparable to that of the standard normal distribution. Its mean and variance can be changed to the desired values. The novel sequences have also good randomness. The applications for radar mask jamming are analyzed.展开更多
The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase ...The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase of the skin return. Although the median value of the total cross-eye gain distribution had been analyzed in previous studies, the extreme values providing useful indications of the upper and lower bounds of the total cross-eye gain have not been analyzed until now. In this paper, the cumulative distribution function and the extreme values of the total cross-eye gain of MRCJ are derived. The angular error induced in threat monopulse radar as a figure of merit is used to analyze the performance of MRCJ system. Simulation results demonstrate the variation of the angular error and discuss the proper value of jamming-to-signal ratio(JSR) making the MRCJ system more effective in consideration of the whole distribution of the total cross-eye gain.展开更多
This paper focuses on the jamming problem of bistatic synthetic aperture radar (BiSAR), and a jamming method against BiSAR based on modulation theory is proposed. The proposed jamming method modulates the BiSAR signal...This paper focuses on the jamming problem of bistatic synthetic aperture radar (BiSAR), and a jamming method against BiSAR based on modulation theory is proposed. The proposed jamming method modulates the BiSAR signal with the cosinusoidal phase to generate multi-false targets in range, and further rotates the jammer to generate multi-false targets in azimuth. The range multi-false targets and azimuth multi-false targets form the two-dimensional cover jamming or deception jamming, which can protect the important targets efficiently. The number of false targets, the interval of false targets, and the jamming square can be adjusted flexibly by setting different range jamming parameters and azimuth jamming parameters. The jamming performance and the choosing criteria of jamming parameters are also discussed. Finally, the simulated data verify the effectiveness of the jamming method.展开更多
Tolerance sensitivity limits the practical application of the cross-eye jammer.Previous literature has demonstrated that retrodirective cross-eye jamming with multiple antenna elements possesses the advantage of loose...Tolerance sensitivity limits the practical application of the cross-eye jammer.Previous literature has demonstrated that retrodirective cross-eye jamming with multiple antenna elements possesses the advantage of loose tolerance requirements compared to traditional cross-eye jamming.However,the previous analysis was limited,because there are still some factors affecting the parameter tolerance of the multiple-element retrodirective cross-eye jamming(MRCJ)system and they have not been investigated completely,such as the loop difference,the baseline ratio and the jammer-to-signal ratio.This paper performs a comprehensive tolerance analysis of the MRCJ system with a nonuniformspacing linear array.Simulation results demonstrate the tolerance effects of the above influence factors and give reasonable advice for easing tolerance sensitivity.展开更多
This paper presents an approach for mitigating the cross-eye jamming using a dual-polarization array. By transmitting a sum beam and a difference beam in two orthogonal polarimetric channels, a synthesized transmitted...This paper presents an approach for mitigating the cross-eye jamming using a dual-polarization array. By transmitting a sum beam and a difference beam in two orthogonal polarimetric channels, a synthesized transmitted beam with spatially varying polarization is produced, such that the polarization of the transmitted radar wave varies in azimuth or elevation. Thus, the phases of the signals received on the two antennas of a cross-eye jammer become unequal, and an additional phase difference is introduced to disrupt the 180? phase shifting in the retrodirective loop of the jammer. By means of beam scanning in a small angular range,the optimal beam steering configuration can be found to maximize the phase error for the mitigation of cross-eye jamming. As a result, the jamming performance of the cross-eye jammer degrades largely. Theoretical analysis and simulation results indicate that the proposed method is valid and feasible.展开更多
To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separatio...To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separation of the jamming and the target echo from the jammed mixture in the single channel of the receiver. Firstly, the presented method utilizes a prior information about the differences between the jamming component and the radar transmitted signal to construct two signal-adapted sub-dictionaries and to determine the weights. Then the WMP algorithm is applied to remove the jamming component from the mixture. Experimental results verify the validity of the presented method. By comparison of the pulse compression performance, the simulation results shows that the presented method is superior to the method of frequency domain cancellation (FDC) when the jamming-to-signal ratio (JSR) is lower than 15 dB.展开更多
Monopulse radar is widely used in military.Jamming monopulse radar has always been a research hotspot in electronic warfare(EW).Cross-eye jamming has always been considered as the most effective measures to jam with m...Monopulse radar is widely used in military.Jamming monopulse radar has always been a research hotspot in electronic warfare(EW).Cross-eye jamming has always been considered as the most effective measures to jam with monopulse radar.In this paper, we propose a multi-group three-tuple crosseye jamming structure where each group contains three antenna elements with a definite phase and an amplitude relationship.Then, based on the principle of monopulse angle measurement, the error angle is deduced theoretically.Simulations show that such a multi-group three-tuple cross-eye jamming structure performs better than the multi-element cross-eye jamming structure previously proposed, and the analysis of the centroid shows that the centroid of the structure proposed in this paper is more widely distributed in space.展开更多
It is potentially useful to perform deception or cover jamming using the rotating angular reflectors since they can form deception echoes along range and azimuth. Inspired by the cohe- rent jamming and micro-motion mo...It is potentially useful to perform deception or cover jamming using the rotating angular reflectors since they can form deception echoes along range and azimuth. Inspired by the cohe- rent jamming and micro-motion modulation, a novel active method is proposed for inverse synthetic aperture radar (ISAR). Radar pulses are sampled and frequency-modulated along azimuth by si- nusoidal signal, and then the jamming signals are retransmitted to the radar and the jamming images are induced after ISAR imaging. Therein, the jamming principle, key parameters and the jamming effect are discussed. The simulated data verify the effectiveness of the jamming method.展开更多
Pointing angle and pattern of the antenna can be changed swiftly to actualize the azimuth beam scanning by using electronic beam steering, which makes the Synthetic Aperture Radar (SAR) system more flexible and achiev...Pointing angle and pattern of the antenna can be changed swiftly to actualize the azimuth beam scanning by using electronic beam steering, which makes the Synthetic Aperture Radar (SAR) system more flexible and achieve a high resolution or cover a long strip within short time span. When the pointing angle is steered away from boresight, some aberrations may appear on the antenna pattern, e.g., the grating lobe appears, the main lobe gain decrease, and antenna pattern broadens, e.g., the aberrations result in the worsening of system performance, and complicate the corresponding performance analysis method. Conventional computation methods of performance parameters do not account for the rapid change of the antenna pattern. It introduces remarkable errors when the scanning angle is large. In this paper, a method of calculating performance parameters is proposed for the beam steering mode, which achieves the parameters by the energy accumulation in time domain. Actually, the proposed method simulates the working process of SAR and obtains accurate performance parameters. Furthermore, we analyze the effects of the grating lobe on the Azimuth Ambiguity to Signal Ratio (AASR), and present the generic Pulse Repetition Frequency (PRF) choosing principle which can also prevent the ambiguous area from weighting by the grating lobe. Finally, the effect of the antenna configuration on the performance parameters is analyzed by a system example.展开更多
基金supported by the Equipment Pre-research Project(GK202002A020068)。
文摘Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.
基金supported by the National Natural Science Foundation of China(6207148262001510)the Civil Aviation Administration o f China(U1733116)。
文摘Mainlobe jamming(MLJ)brings a big challenge for radar target detection,tracking,and identification.The suppression of MLJ is a hard task and an open problem in the electronic counter-counter measures(ECCM)field.Target parameters and target direction estimation is difficult in radar MLJ.A target parameter estimation method via atom-reconstruction in radar MLJ is proposed in this paper.The proposed method can suppress the MLJ and simultaneously provide high estimation accuracy of target range and angle.Precisely,the eigen-projection matrix processing(EMP)algorithm is adopted to suppress the MLJ,and the target range is estimated effectively through the beamforming and pulse compression.Then the target angle can be effectively estimated by the atom-reconstruction method.Without any prior knowledge,the MLJ can be canceled,and the angle estimation accuracy is well preserved.Furthermore,the proposed method does not have strict requirement for radar array construction,and it can be applied for linear array and planar array.Moreover,the proposed method can effectively estimate the target azimuth and elevation simultaneously when the target azimuth(or elevation)equals to the jamming azimuth(or elevation),because the MLJ is suppressed in spatial plane dimension.
基金the National Natural Science Fundation of China (10377014).
文摘The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with self-defense electronic jamming, a decision-making model with self-defense electronic jamming based on the discrete dynamic Bayesian network is established. Then jamming decision inferences by the aid of the algorithm of discrete dynamic Bayesian network are carried on. The simulating result shows that this method is able to synthesize different targets which are not predominant. In this way, various features at the same time, as well as the same feature appearing at different time complement mutually; in addition, the accuracy and reliability of electronic jamming decision making are enhanced significantly.
文摘The combat survivability is an essential factor to be considered in the development of recent military aircraft. Radar stealth and onboard electronic attack are two major techniques for the reduction of aircraft susceptibility. A tactical scenario for a strike mission is presented. The effect of aircraft radar cross section on the detection probability of a threat radar, as well as that of onboard jammer, are investigated. The guidance errors of radar guided surface to air missile and anti aircraft artillery, which are disturbed by radar cross section reduction or jammer radiated power and both of them are determined. The probability of aircraft kill given a single shot is calculated and finally the sortie survivability of an attack aircraft in a supposed hostile thread environment worked out. It is demonstrated that the survivability of a combat aircraft will be greatly enhanced by the combined radar stealth and onboard electronic attack, and the evaluation metho dology is effective and applicable.
文摘This paper proposes a suppression method of the deceptive false target(FT) produced by digital radio frequency memory(DRFM) in a multistatic radar system. The simulated deceptive false targets from DRFM cannot be easily discriminated and suppressed with traditional radar systems. Therefore, multistatic radar has attracted considerable interest as it provides improved performance against deception jamming due to several separated receivers. This paper first investigates the received signal model in the presence of multiple false targets in all receivers of the multistatic radar. Then, obtain the propagation time delays of the false targets based on the cross-correlation test of the received signals in different receivers. In doing so, local-density-based spatial clustering of applications with noise(LDBSCAN) is proposed to discriminate the FTs from the physical targets(PTs) after compensating the FTs time delays, where the FTs are approximately coincident with one position, while PTs possess small dispersion.Numerical simulations are carried out to demonstrate the feasibility and validness of the proposed method.
文摘The principle of uniform DFT filter bank is presented. Exploiting poly-phase structure, radar jamming system samples the intercepted wideband radar signals through analysis filter bank by different channels and linearly modulates the intercepted radar signal according to the theory of signal and system, then synthesizes the jamming signal through the synthesis filter hank. The method merely requires lower sample frequency, reduces the computational complexity and the data quantity to be processed. The un-ideal filter's influence to the result of signals processing is analyzed by simulating the match filter in radar jamming system.
基金Sponsored by National Basic Research Program of China (6139001012)
文摘A deceptive pull-off jamming method to terminal guidance radar is put forward in this paper.The design rules about the important jamming parameters are discussed in detail,including the number of the decoy targets in range dimension,the velocity of the range gate pull-off,and the number of the decoy targets in velocity dimension and the velocity of the Doppler frequency pull-off.Also,the steps to design these parameters are brought out.The rules and design procedure discussed in this paper have important meaning for the choice of the reasonable jamming parameters in the practical applications,which can help to obtain good jamming effect.
基金supported by the National Natural Science Foundation of China(Grant No.61973037 and No.61673066).
文摘This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.
基金the National Natural Science Foundation of China(Grant No.62101579).
文摘Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.
基金National Natural Science Foundation of China(Grant No.62001506)to provide fund for conducting experiments。
文摘The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case.
基金Supported by the National Natural Science Foundation of China(61571043)111 Project of China(B14010)
文摘A modified chaff jamming recognition method of radar is investigated using grey relational analysis( GRA) based on the difference in echo correlation characteristics between a complex rigid target and chaff cloud in time domain. Slice method( SM),a novel modeling approach,is proposed to construct an electromagnetic scattering model of chaff cloud in a scenario with slowly moving platform that is targeted. The diffusion characteristics and echo characteristics of the chaff cloud are analyzed. The GRA of a real target and chaff cloud shows that the adjacent return waves have a good correlation for the target but a weak correlation for chaff cloud. Since the correlation degree of chaff cloud's echo is far lower than that of a complex rigid target's,the chaff jamming can be identified by setting a reasonable threshold. Simulation results are presented to verify the effectiveness of this method.
基金This work was supported by the NEW Laboratory Funding under Grant No.w090403.
文摘A simple generation approach for chaotic sequences with Gauss probability distribution is proposed. Theoretical analysis and simulation based on Logistic chaotic model show that the approach is feasible and effective. The distribution characteristics of the novel chaotic sequence are comparable to that of the standard normal distribution. Its mean and variance can be changed to the desired values. The novel sequences have also good randomness. The applications for radar mask jamming are analyzed.
基金supported by the Weapons and Equipment Research Foundation of China(304070102)
文摘The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase of the skin return. Although the median value of the total cross-eye gain distribution had been analyzed in previous studies, the extreme values providing useful indications of the upper and lower bounds of the total cross-eye gain have not been analyzed until now. In this paper, the cumulative distribution function and the extreme values of the total cross-eye gain of MRCJ are derived. The angular error induced in threat monopulse radar as a figure of merit is used to analyze the performance of MRCJ system. Simulation results demonstrate the variation of the angular error and discuss the proper value of jamming-to-signal ratio(JSR) making the MRCJ system more effective in consideration of the whole distribution of the total cross-eye gain.
基金supported by the National Defense Pre-research Program during the 13th Five-Year Plan(30603050303 301020302)
文摘This paper focuses on the jamming problem of bistatic synthetic aperture radar (BiSAR), and a jamming method against BiSAR based on modulation theory is proposed. The proposed jamming method modulates the BiSAR signal with the cosinusoidal phase to generate multi-false targets in range, and further rotates the jammer to generate multi-false targets in azimuth. The range multi-false targets and azimuth multi-false targets form the two-dimensional cover jamming or deception jamming, which can protect the important targets efficiently. The number of false targets, the interval of false targets, and the jamming square can be adjusted flexibly by setting different range jamming parameters and azimuth jamming parameters. The jamming performance and the choosing criteria of jamming parameters are also discussed. Finally, the simulated data verify the effectiveness of the jamming method.
基金the National Natural Science Foundation of China(61801488,61921001,61601008).
文摘Tolerance sensitivity limits the practical application of the cross-eye jammer.Previous literature has demonstrated that retrodirective cross-eye jamming with multiple antenna elements possesses the advantage of loose tolerance requirements compared to traditional cross-eye jamming.However,the previous analysis was limited,because there are still some factors affecting the parameter tolerance of the multiple-element retrodirective cross-eye jamming(MRCJ)system and they have not been investigated completely,such as the loop difference,the baseline ratio and the jammer-to-signal ratio.This paper performs a comprehensive tolerance analysis of the MRCJ system with a nonuniformspacing linear array.Simulation results demonstrate the tolerance effects of the above influence factors and give reasonable advice for easing tolerance sensitivity.
基金supported by the National Natural Science Foundation of China(6149069261401488)
文摘This paper presents an approach for mitigating the cross-eye jamming using a dual-polarization array. By transmitting a sum beam and a difference beam in two orthogonal polarimetric channels, a synthesized transmitted beam with spatially varying polarization is produced, such that the polarization of the transmitted radar wave varies in azimuth or elevation. Thus, the phases of the signals received on the two antennas of a cross-eye jammer become unequal, and an additional phase difference is introduced to disrupt the 180? phase shifting in the retrodirective loop of the jammer. By means of beam scanning in a small angular range,the optimal beam steering configuration can be found to maximize the phase error for the mitigation of cross-eye jamming. As a result, the jamming performance of the cross-eye jammer degrades largely. Theoretical analysis and simulation results indicate that the proposed method is valid and feasible.
文摘To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separation of the jamming and the target echo from the jammed mixture in the single channel of the receiver. Firstly, the presented method utilizes a prior information about the differences between the jamming component and the radar transmitted signal to construct two signal-adapted sub-dictionaries and to determine the weights. Then the WMP algorithm is applied to remove the jamming component from the mixture. Experimental results verify the validity of the presented method. By comparison of the pulse compression performance, the simulation results shows that the presented method is superior to the method of frequency domain cancellation (FDC) when the jamming-to-signal ratio (JSR) is lower than 15 dB.
文摘Monopulse radar is widely used in military.Jamming monopulse radar has always been a research hotspot in electronic warfare(EW).Cross-eye jamming has always been considered as the most effective measures to jam with monopulse radar.In this paper, we propose a multi-group three-tuple crosseye jamming structure where each group contains three antenna elements with a definite phase and an amplitude relationship.Then, based on the principle of monopulse angle measurement, the error angle is deduced theoretically.Simulations show that such a multi-group three-tuple cross-eye jamming structure performs better than the multi-element cross-eye jamming structure previously proposed, and the analysis of the centroid shows that the centroid of the structure proposed in this paper is more widely distributed in space.
基金supported by the Fundamental Research Funds for the Central Universities(K50511020024)
文摘It is potentially useful to perform deception or cover jamming using the rotating angular reflectors since they can form deception echoes along range and azimuth. Inspired by the cohe- rent jamming and micro-motion modulation, a novel active method is proposed for inverse synthetic aperture radar (ISAR). Radar pulses are sampled and frequency-modulated along azimuth by si- nusoidal signal, and then the jamming signals are retransmitted to the radar and the jamming images are induced after ISAR imaging. Therein, the jamming principle, key parameters and the jamming effect are discussed. The simulated data verify the effectiveness of the jamming method.
文摘Pointing angle and pattern of the antenna can be changed swiftly to actualize the azimuth beam scanning by using electronic beam steering, which makes the Synthetic Aperture Radar (SAR) system more flexible and achieve a high resolution or cover a long strip within short time span. When the pointing angle is steered away from boresight, some aberrations may appear on the antenna pattern, e.g., the grating lobe appears, the main lobe gain decrease, and antenna pattern broadens, e.g., the aberrations result in the worsening of system performance, and complicate the corresponding performance analysis method. Conventional computation methods of performance parameters do not account for the rapid change of the antenna pattern. It introduces remarkable errors when the scanning angle is large. In this paper, a method of calculating performance parameters is proposed for the beam steering mode, which achieves the parameters by the energy accumulation in time domain. Actually, the proposed method simulates the working process of SAR and obtains accurate performance parameters. Furthermore, we analyze the effects of the grating lobe on the Azimuth Ambiguity to Signal Ratio (AASR), and present the generic Pulse Repetition Frequency (PRF) choosing principle which can also prevent the ambiguous area from weighting by the grating lobe. Finally, the effect of the antenna configuration on the performance parameters is analyzed by a system example.