期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Simulation of Secondary Electron and Backscattered Electron Emission in A6 Relativistic Magnetron Driven by Different Cathode
1
作者 刘美琴 李博轮 +2 位作者 刘纯亮 Fuks MIKHAIL Edl SCHAMILOGLU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第1期64-70,共7页
Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is appli... Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is applied with a 350 kV voltage pulse,electrons emitted from the cathode with high energy will strike the anode block wall.The emitted secondary electrons and backscattered electrons affect the interaction between electrons and RF fields induced by the operating modes,which decreases the output power in the radial output relativistic magnetron by about 15%(10%for the axial output relativistic magnetron),decreases the anode current by about 5%(5%for the axial output relativistic magnetron),and leads to a decrease of electronic efficiency by 8%(6%for the axial output relativistic magnetron).The peak value of the current formed by secondary and backscattered current equals nearly half of the amplitude of the anode current,which may help the growth of parasitic modes when the applied magnetic field is near the critical magnetic field separating neighboring modes.Thus,mode competition becomes more serious. 展开更多
关键词 secondary electron and backscattered electron emission relativistic magnetron mode competition critical magnetic field output power anode current electronic efficiency transparent cathode solid cathode
下载PDF
D-A structured high efficiency solid luminogens with tunable emissions: Molecular design and photophysical properties
2
作者 Yunzhong Wang Zihan He +4 位作者 Gan Chen Tong Shan Wangzhang Yuan Ping Lu Yongming Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第11期2133-2138,共6页
Fabrication of efficient solid luminogens with tunable emission is both fundamentally significant and technically important. Herein, based on our previous strategy for the construction of efficient and multifunctional... Fabrication of efficient solid luminogens with tunable emission is both fundamentally significant and technically important. Herein, based on our previous strategy for the construction of efficient and multifunctional solid luminogens through the combination of diverse aggregation-induced emission (ALE) units with other functional moieties, a group of luminophores with electron donor-acceptor (D-A) structure and typical intramolecular charge transfer (ICT) characteristics, namely CZ-DCDPP, DPA-DCDPP and DBPA-DCDPP were synthesized and investigated. The presence of twisting and AlE-active 2,3- dicyano-S,6-diphenylpyrazine (DCDPP) moiety endows them highly emissive in the solid states, whereas the introduction of arylamines with varied electron-donating capacity and different conjugation render them with tunable solid emissions from green to red. While CZ-DCDPP and DPA-DCDPP solids exhibit distinct mechanochromism, both DPA-DCDPP and DBPA-DCDPP solids can generate efficient red emission. Owing to their high efficiency, remarkable thermal and morphological stabilities and moreover red emission, they are promising for diverse optoelectronic and biological applications. 展开更多
关键词 Aggregation-induced emission lntramolecutar charge transfer Electron donor-acceptor Efficient solid luminogens Luminescence mechanochromism Red emission
原文传递
Electron transfer dynamics in Schottky junction photocatalyst during electron donor-assisted hydrogen production 被引量:1
3
作者 Jianjun Zhang Jingjing Liu +3 位作者 Zheng Meng Sanjib Jana Linxi Wang Bicheng Zhu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第28期1-9,共9页
Electron donors(EDs)are widely used to improve the H 2 production performance of Schottky junction photocatalysts,but the functions of EDs are still unknown from the perspective of electron transfer dy-namics.Herein,P... Electron donors(EDs)are widely used to improve the H 2 production performance of Schottky junction photocatalysts,but the functions of EDs are still unknown from the perspective of electron transfer dy-namics.Herein,Pt nanocluster-decorated CdS nanorod is successfully prepared to construct a typical CdS/Pt Schottky junction.Pt nanoclusters with a diameter of∼2 nm are deposited on the surface of CdS nanorods by in situ photoreduction at sub-zero temperature.The CdS/Pt photocatalyst using lactic acid shows a higher H_(2)production rate of 4762μmol g^(-1)h^(-1)compared to that using methanol,tri-ethanolamine,and glycerol.To understand the cause,the dynamics of photogenerated carriers in CdS/Pt photocatalysts during ED-assisted H_(2)production are revealed by femtosecond transient absorption spec-troscopy.Among the four organic EDs,lactic acid enables the fastest electron transfer rate of 1.8×10^(9)s^(-1)and the highest electron transfer efficiency of 76%at the CdS/Pt interface due to the most efficient hole consumption.This work sheds light on the importance of efficient interfacial electron transfer for im-proving the photocatalytic performance of Schottky junction photocatalysts. 展开更多
关键词 Transient absorption spectroscopy Interfacial electron transfer Electron transfer rate Electron transfer efficiency Hole consumption
原文传递
Electron transmission ef f iciency of gating-GEM foil for TPC
4
作者 谢文庆 黄孟 +3 位作者 李婷 田阳 李玉兰 李元景 《Chinese Physics C》 SCIE CAS CSCD 2012年第4期339-343,共5页
In a TPC, ion feedback from the readout detector can cause a space-charge effect and distort the electrical field in the drift region. Gating is one of the effective methods to solve this problem, which can block ions... In a TPC, ion feedback from the readout detector can cause a space-charge effect and distort the electrical field in the drift region. Gating is one of the effective methods to solve this problem, which can block ions at the expense of losing a certain amount of primary electrons. Compared with the traditional design with a wire structure, gating based on GEM foil is more attractive because of its simplicity. In this paper, the factors influencing the electron transmission efficiency are studied with simulations and experiments. After optimizing all these parameters, an electron transmission efficiency over 80% is obtained. 展开更多
关键词 GEM GATING electron transmission efficiency TPC
原文传递
Synergistic effect of TiO_2 hierarchical submicrospheres for high performance dye-sensitized solar cells
5
作者 Jiang Sheng Linhua Hu +2 位作者 Li'e Mo Jichun Ye Songyuan Dai 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第6期822-828,共7页
The performance of dye-sensitized solar cells(DSCs) could be improved by using rationally designed mesoporous film structure for electron collection, dye adsorption and light scattering. The development of a novel dou... The performance of dye-sensitized solar cells(DSCs) could be improved by using rationally designed mesoporous film structure for electron collection, dye adsorption and light scattering. The development of a novel double layer film prepared by TiO_2 hierarchical submicrospheres and nanoparticles was reported in this article. The submicrospheres were composed of rutile nanorods of 10 nm diameter and the length of 150–250 nm, which facilitated fast electron transport, charge collection and light scattering. Using a double layer structure consisting of the 10 wt% film as a dye loading layer and the 50 wt% film as the light scattering layer, C101 sensitizer and liquid electrolyte, DSC yielded power conversion efficiency of 9.68% under 1 sun illumination. 展开更多
关键词 dye-sensitized solar cells rutile hierarchical submicrospheres high light harvesting high electron collection efficiency
原文传递
Spatial resolution optimization in a THGEM-based UV photon detector
6
作者 P.Ray G.Baishali +1 位作者 V.Radhakrishna K.Rajanna 《Radiation Detection Technology and Methods》 2018年第2期60-66,共7页
Introduction THick Gas Electron Multiplier(THGEM)is considered in many UV photon detector applications.It has the capability of detecting single photon and imaging with high sensitivity.Operating parameters such as ch... Introduction THick Gas Electron Multiplier(THGEM)is considered in many UV photon detector applications.It has the capability of detecting single photon and imaging with high sensitivity.Operating parameters such as choice of gas mixture,pressure,drift field,drift gap,multiplication voltage,induction field and induction gap play an important role in deciding the spatial resolution of the detector.Detailed simulation study enables to optimize the above-mentioned parameters for a given THGEM-based imaging detector and hence to achieve improved performance for the same.Materials and methods Simulation,using ANSYS and Garfield++,starts with the release of primary electrons at random coordinates on the photocathode plane.They are tracked as they pass through the drift gap and THGEM hole till the electron cloud reaches anode plane.Distribution of electron cloud on the anode plane along X and Y axis is plotted in histogram and fitted with Gaussian function to determine spatial resolution.Ar/CO_(2)(70:30)mixture,which shows higher ETE and lower transverse diffusion,is chosen for this simulation study.Conclusion Transverse diffusion has a major impact on both ETE and the spatial resolution.Lower transverse diffusion coefficient is always desired for having better resolution as well as for ETE.It is found from the simulation study that higher gas pressure,lower drift field and induction field,smaller drift and induction gap can provide optimum detection efficiency with the best spatial resolution.The simulation method proposed here can also be extended to X-ray imaging detectors. 展开更多
关键词 Thick gas electron multiplier(THGEM) UV photon detectors Electron transfer efficiency Spatial resolution simulation Garfield++
原文传递
Organic functional materials based buffer layers for efficient perovskite solar cells
7
作者 Fateh Ullah Hongzheng Chen Chang-Zhi Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第3期503-511,共9页
In this review, we highlight the recent development of organic π-functional materials as buffer layers in constructing efficient perovskite solar cells(PVSCs). By following a brief introduction on the PVSC developm... In this review, we highlight the recent development of organic π-functional materials as buffer layers in constructing efficient perovskite solar cells(PVSCs). By following a brief introduction on the PVSC development, device architecture and material design features, we exemplified the exciting progresses made in field by exploiting organic π-functional materials based hole and electron transport layers(HTLs and ETLs) to enable high-performance PVSCs. 展开更多
关键词 Perovskite solar cells Organic functional material Hole transport layer Electron transport layer Power conversion efficiency
原文传递
Highly efficient blue organic light-emitting diodes using various hole and electron confinement layers
8
作者 Jin Sung Kang Ju-An Yoon +5 位作者 Seung Il Yoo Jin Wook Kim Bo Mi Lee Hyeong Hwa Yu C.-B.Moon Woo Young Kim 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第3期72-75,共4页
In this Letter, blue phosphorescence organic light-emitting diodes (PHOLEDs) employ structures for electron and/or hole confinement; 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene is used as a hole confinement layer... In this Letter, blue phosphorescence organic light-emitting diodes (PHOLEDs) employ structures for electron and/or hole confinement; 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene is used as a hole confinement layer and tris-(phenylpyrazole)iridium [Ir(ppz)3] is utilized for an electron confinement layer (ECL). The electrical and optical properties of the fabricated blue PHOLEDs with various carrier-confinement structures are analyzed. Structures with a large ehergy offset between the carrier confinement and emitting layers enhance the charge-carrier balance in the emitting region, resulting from the effective carrier confinement. The maximum external quantum efficiency of the blue PHOLEDs with the double-ECLs is 24.02% at 1500 cd/m^2 and its luminous efficiency is 43.76 cd/A, which is 70.47% improved compared to the device without a carrier-confinement layer. 展开更多
关键词 BLUE Highly efficient blue organic light-emitting diodes using various hole and electron confinement layers OLEDs EML ECL
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部