期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Theoretical Study on Electronic Transport Properties of Oligothiophene Molecular Devices 被引量:1
1
作者 李宗良 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第2期194-198,I0004,共6页
Based on the first-principles computational method and the elastic scattering Green's function theory, we have investigated the electronic transport properties of different oligothiophene molecular junctions theoreti... Based on the first-principles computational method and the elastic scattering Green's function theory, we have investigated the electronic transport properties of different oligothiophene molecular junctions theoretically. The numerical results show that the difference of geometric symmetries of the oligothiophene molecules leads to the difference of the contact configurations between the molecule and the electrodes, which results in the difference of the coupling parameters between the molecules and electrodes as well as the delocalization properties of the molecular orbitals. Hence, the series of oligothiophene molecular junctions display unusual conductive properties on the length dependence. 展开更多
关键词 Molecular device electronic transport property Oligothiophene molecule junction
下载PDF
Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons 被引量:1
2
作者 Yang Liu Cai-Juan Xia +3 位作者 Bo-Qun Zhang Ting-Ting Zhang Yan Cui Zhen-Yang Hu 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第6期62-65,共4页
The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function... The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function formalism combined with first-principles density functional theory.The calculated results show that the width and doping play significant roles in the electronic transport properties of the molecular junction.A higher current can be obtained for the molecular junctions with the tailoring AGNRs with W=11.Furthermore,the current of boron-doped tailoring AGNRs with widths W=7 is nearly four times larger than that of the undoped one,which can be potentially useful for the design of high performance electronic devices. 展开更多
关键词 Effect of Chemical Doping on the electronic transport properties of Tailoring Graphene Nanoribbons
下载PDF
Effect of Chirality on the Electronic Transport Properties of the Thioxanthene-Based Molecular Switch
3
作者 夏蔡娟 张博群 +2 位作者 杨茂 王春兰 杨爱云 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第4期108-112,共5页
Based on the nonequilibrium Green function method and density functional theory calculations, we theoretically investigate the effect of chirality on the electronic transport properties of thioxanthene-based molecular... Based on the nonequilibrium Green function method and density functional theory calculations, we theoretically investigate the effect of chirality on the electronic transport properties of thioxanthene-based molecular switch. The molecule comprises the switch which can exhibit different chiralities, that is, cis-form and trans-form by ultraviolet or visible irradiation. The results clearly reveal that the switching behaviors can be realized when the molecule converts between cis-form and trans-form. ~urthermore, the on-off ratio can be modulated by the chirality of the carbon nanotube electrodes. The maximum on-off ratio can reach 109 at 0.4 V for the armchair junction, suggesting potential applications of this type of junctions in future design of functional molecular devices. 展开更多
关键词 of in or with form Effect of Chirality on the electronic transport properties of the Thioxanthene-Based Molecular Switch cis on
下载PDF
Hydration effect on the electronic transport properties of oligomeric phenylene ethynylene molecular junctions
4
作者 李宗良 李怀志 +2 位作者 马勇 张广平 王传奎 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第6期497-502,共6页
A first-principles computational method based on the hybrid density functional theory is developed to simulate the electronic transport properties of oligomeric phenylene ethynylene molecular junctions with H2O molecu... A first-principles computational method based on the hybrid density functional theory is developed to simulate the electronic transport properties of oligomeric phenylene ethynylene molecular junctions with H2O molecules accumulated in the vicinity as recently reported by Na et al. [Nanotechnology 18 424001 (2007)]. The numerical results show that the hydrogen bonds between the oxygen atoms of the oligomeric phenylene ethynylene molecule and H2O molecules result in the localisation of the molecular orbitals and lead to the lower transition peaks. The H2O molecular chains accumulated in the vicinity of the molecular junction can not only change the electronic structure of the molecular junctions, but also open additional electronic transport pathways. The obvious influence of H2O molecules on the electronic structure of the molecular junction and its electronic transport properties is thus demonstrated. 展开更多
关键词 hydration effect electronic transport properties oligomeric phenylene ethynylene molecular junction
下载PDF
Measurement accuracy analysis of the free carrier absorption determination of the electronic transport properties of silicon wafers
5
作者 张希仁 高椿明 +1 位作者 周鹰 王占平 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期498-504,共7页
By, introducing the random and systematic errors in simulated data computed from conventional frequency-scan and laterally resolved modulated free carrier absorption theory models, we investigate the relative determin... By, introducing the random and systematic errors in simulated data computed from conventional frequency-scan and laterally resolved modulated free carrier absorption theory models, we investigate the relative determination sensitivities of three electronic transport properties, namely, carrier lifetime carrier diffusivity and front surface recombination velocity of silicon wafers determined by frequency-scan and laterally resolved techniques. The phase and amplitude data with random errors as functions of the modulation frequency at zero pump-probe-beam separation or of the two-beam separation at four different modulation frequencies are simultaneously fitted to an appreciated carrier diffusion model to extract three transport parameters. The statistical results and fitted accuracies of the transport parameter determined by both techniques are theoretically analysed. Corresponding experimental results are carried out to compare to the simulated results. The simulated and experimental results show that the determination of the transport properties of silicon wafers by the laterally resolved technique are more accurate, as compared with that by the frequency-scan technique. 展开更多
关键词 laterally resolved modulated free-carrier absorption frequency scans electronic transport properties ACCURACY
下载PDF
Electronic Transport Properties of Diblock Co-Oligomer Molecule Devices Sandwiched between Nitrogen Doping Armchair Graphene Nanoribbon Electrodes
6
作者 叶萌 夏蔡娟 +4 位作者 杨爱云 张博群 苏耀恒 涂喆研 马越 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期71-74,共4页
We investigate the electronic transport properties of dipyrimidinyl-diphenyl sandwiched between two armchair graphene nanoribbon electrodes using the nonequilibrium Green function formalism combined with a first-princ... We investigate the electronic transport properties of dipyrimidinyl-diphenyl sandwiched between two armchair graphene nanoribbon electrodes using the nonequilibrium Green function formalism combined with a first-principles method based on density functional theory. Among the three models M1–M3, M1 is not doped with a heteroatom. In the left parts of M2 and M3, nitrogen atoms are doped at two edges of the nanoribbon. In the right parts, nitrogen atoms are doped at one center and at the edges of M2 and M3, respectively. Comparisons of M1, M2 and M3 show obvious rectifying characteristics, and the maximum rectification ratios are up to 42.9 in M2. The results show that the rectifying behavior is strongly dependent on the doping position of electrodes. A higher rectification ratio can be found in the dipyrimidinyl-diphenyl molecular device with asymmetric doping of left and right electrodes, which suggests that this system has a broader application in future logic and memory devices. 展开更多
关键词 electronic transport properties of Diblock Co-Oligomer Molecule Devices Sandwiched between Nitrogen Doping Armchair Graphene Nanoribbon Electrodes NDR
下载PDF
Electronic transport properties of the armchair silicon carbide nanotube
7
作者 宋久旭 杨银堂 +2 位作者 刘红霞 郭立新 张志勇 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第11期15-17,共3页
The electronic transport properties of the armchair silicon carbide nanotube(SiCNT) are investigated by using the combined nonequilibrium Green's function method with density functional theory.In the equilibrium tr... The electronic transport properties of the armchair silicon carbide nanotube(SiCNT) are investigated by using the combined nonequilibrium Green's function method with density functional theory.In the equilibrium transmission spectrum of the nanotube,a transmission valley of about 2.12 eV is discovered around Fermi energy,which means that the nanotube is a wide band gap semiconductor and consistent with results of first principle calculations. More important,negative differential resistance is found in its current voltage characteristic.This phenomenon originates from the variation of density of states caused by applied bias voltage.These investigations are meaningful to modeling and simulation in silicon carbide nanotube electronic devices. 展开更多
关键词 electronic transport properties armchair silicon carbide nanotube negative differential resistance non-equilibrium Green's function
原文传递
Inverse Stone-Thrower-Wales defect and transport properties of 9AGNR double-gate graphene nanoribbon FETs
8
作者 Mohammad Bagher NASROLLAHNEJAD Parviz KESHAVARZI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期2943-2952,共10页
Defect-based engineering of carbon nanostructures is becoming an important and powerful method to modify the electron transport properties in graphene nanoribbon FETs. In this paper, the impact of the position and sym... Defect-based engineering of carbon nanostructures is becoming an important and powerful method to modify the electron transport properties in graphene nanoribbon FETs. In this paper, the impact of the position and symmetry of the ISTW defect on the performance of low dimensional 9AGNR double-gate graphene nanoribbon FET (DG-GNRFET) is investigated. Analyzing the transmission spectra, density of states and current-voltage characteristics shows that the defect effect on the electron transport is considerably varied depending on the positions and the orientations (the symmetric and asymmetric configuration) of the ISTW defect in the channel length. Based on the results, the asymmetric ISTW defect leads to a more controllability of the gate voltages over drain current, and drain current increases more than 5 times. The results have also con rmed the ISTW defect engineering potential on controlling the channel electrical current of DG-AGNR FET. 展开更多
关键词 inverse Stone-Thrower-Wales defect electronic transport properties graphene nanoribbon tight binding NEGF formalism
下载PDF
Effect of boron/nitrogen co-doping on transport properties of C60 molecular devices
9
作者 伍晓赞 黄光辉 +1 位作者 陶庆斌 徐慧 《Journal of Central South University》 SCIE EI CAS 2013年第4期889-893,共5页
By using nonequilibrium Green's function method and first-principles calculations, the electronic transport properties of doped C60 molecular devices were investigated. It is revealed that the C60 molecular devices s... By using nonequilibrium Green's function method and first-principles calculations, the electronic transport properties of doped C60 molecular devices were investigated. It is revealed that the C60 molecular devices show the metal behavior due to the interaction between the C60 molecule and the metal electrode. The current-voltage curve displays a linear behavior at low bias, and the currents have the relation of MI〉M3〉M4〉M2 when the bias voltage is lower than 0.6 V. Electronic transport properties are affected greatly by the doped atoms. Negative differential resistance is found in a certain bias range for C60 and C58BN molecular devices, but cannot be observed in C59B and C59N molecular devices. These unconventional effects can be used to design novel nanoelectronic devices. 展开更多
关键词 negative differential resistance molecular device electronic transport property first-principles calculation
下载PDF
Theoretical Study on Electronic and Charge Transfer Properties of Oligo[8]thiophene and Its Circular,Hooped,and Helical Derivatives
10
作者 唐珊珊 刘俊渤 +1 位作者 陈光 靳瑞发 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2014年第1期104-114,共11页
The novel linear, circular, hooped, and helical molecules based on oligo[8]thio- phene were theoretically studied for the applications of charge transfer devices. To investigate the influence of topology for oligo[8]t... The novel linear, circular, hooped, and helical molecules based on oligo[8]thio- phene were theoretically studied for the applications of charge transfer devices. To investigate the influence of topology for oligo[8]thiophene derivatives, the geometry structures, frontier molecular orbital (FMO) energies, charge transport properties, and stability property were predicted by density functional theory methods. The calculated results reported herein show that the oligo[8]thiophene derivative with linear structure has smaller energy gap, and fused oligo[8]thiophene derivative with circular structure has the smallest reorganization energy among the designed molecules. We have also studied the stability properties of the designed molecules, and oligo[8]thiophene derivatives are more stable tharJ the fused oligo[8]thiophene derivatives. 展开更多
关键词 thiophene derivatives electronic property charge transport property stability property.. topology
下载PDF
Electron Transport Properties of Two-Dimensional Si_1P_1 Molecular Junctions
11
作者 Rui-Fang Gao Wen-Yong Su +1 位作者 Feng-Wang Wan-Xiang Feng 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第2期88-91,共4页
We focus on two new 21) materials, i.e., monolayer and bilayer silicon phosphides (Sil P1). Based on the elastic- scattering Green's function, the electronic-transport properties of two-dimensional monolayer and b... We focus on two new 21) materials, i.e., monolayer and bilayer silicon phosphides (Sil P1). Based on the elastic- scattering Green's function, the electronic-transport properties of two-dimensional monolayer and bilayer Au- Si1P1-Au molecular junctions are studied. It is found that their bandgaps are narrow (0.16eV for a monolayer molecular junction and 0.26 e V for a bilayer molecular junction). Moreover, the calculated current-voltage char- acteristics indicate that the monolayer molecular junction provides constant output current (20 hA) over a wide voltage range, and the bilayer molecular junction provides higher current (42 hA). 展开更多
关键词 Electron transport properties of Two-Dimensional Si1P1 Molecular Junctions SI
下载PDF
Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions
12
作者 Dou-Dou Sun Wen-Yong Su +2 位作者 Feng Wang Wan-Xiang Feng Cheng-Lin Heng 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第1期76-80,共5页
We investigate the electronic-transport properties of two-dimensional monolayer films from Au-P-Au molecular junction to Au-Si-Au molecular junction using elastic scattering Green's function theory. In the process of... We investigate the electronic-transport properties of two-dimensional monolayer films from Au-P-Au molecular junction to Au-Si-Au molecular junction using elastic scattering Green's function theory. In the process of replacing the P atoms with Si atoms every other line from the middle of monolayer blue phosphorus molecular structure, the substitution of Si atoms changes the properties of Au-P-Au molecular junction significantly. Interestingly, the current value has a symmetric change as a parabolic curve with the peak appearing in Au-Si_1P_1-Au molecular junction, which provides the most stable current of 15.00 nA in a wide voltage range of 0.70-2.70 V.Moreover, the current-voltage characteristics of the structures indicate that the steps tend to disappear revealing the property similar to metal when the Si atoms dominate the molecular junction. 展开更多
关键词 Electron transport properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions Si
下载PDF
Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
13
作者 杨开巍 李明君 +3 位作者 张小姣 李新梅 高永立 龙孟秋 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期542-548,共7页
By employing non-equilibrium Green's function combined with the spin-polarized density-functional theory, we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons(a As NRs)... By employing non-equilibrium Green's function combined with the spin-polarized density-functional theory, we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons(a As NRs). Our results show that the spin-metal and spin-semiconductor properties can be observed in a As NRs with different widths. We also find that there is nearly 100% bipolar spin-filtering behavior in the a As NR-based device with antiparallel spin configuration. Moreover, rectifying behavior and giant magnetoresistance are found in the device. The corresponding physical analyses have been given. 展开更多
关键词 armchair arsenene nanoribbons spin-dependent electronic transport property spin-polarized density-functional theory bipolar spin-filtering behavior
下载PDF
Regulating Anderson localization with structural defect disorder
14
作者 Mouyang Cheng Haoxiang Chen Ji Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期102-107,共6页
Localization due to disorder has been one of the most intriguing theoretical concepts that evolved in condensed matter physics.Here,we expand the theory of localization by considering two types of disorders at the sam... Localization due to disorder has been one of the most intriguing theoretical concepts that evolved in condensed matter physics.Here,we expand the theory of localization by considering two types of disorders at the same time,namely,the original Anderson’s disorder and the structural defect disorder,which has been suggested to be a key component in recently discovered two-dimensional amorphous materials.While increasing the degree of both disorders could induce localization of wavefunction in real space,we find that a small degree of structural defect disorder can significantly enhance the localization.As the degree of structural defect disorder increases,localized states quickly appear within the extended phase to enter a broad crossover region with mixed phases.We establish two-dimensional diagrams for the wavefunction localization and conductivity to highlight the interplay between the two types of disorders.Our theoretical model provides a comprehensive understanding of localization in two-dimensional amorphous materials and highlights the promising tunability of their transport properties. 展开更多
关键词 Anderson localization structural defect disorder electronic transport properties
下载PDF
Chemical vapor deposition growth and transport properties of MoS_(2)-2H thin layers using molybdenum and sulfur as precursors 被引量:6
15
作者 Zhi-Tian Shi Hong-Bin Zhao +3 位作者 Xiao-Qiang Chen Ge-Ming Wu Feng Wei Hai-Ling Tu 《Rare Metals》 SCIE EI CAS CSCD 2022年第10期3574-3578,共5页
This paper introduces a feasible process to achieve the molybdenum disulfide atomic layers using chemical vapor deposition(CVD) method,with molybdenum thin film and solid sulfur as precursors.And some improvements wer... This paper introduces a feasible process to achieve the molybdenum disulfide atomic layers using chemical vapor deposition(CVD) method,with molybdenum thin film and solid sulfur as precursors.And some improvements were made to reduce the amount of metastable MoS_(2)-3 R.The morphology of the acquired MoS_(2) layers,existing as triangular flakes or large-area continuous films,can be controlled by adjusting the synthesis time and reacting temperature.The characterization results show that the monolayer MoS_(2) flakes reveal a(002)-oriented growth on SiO_(2)/Si substrates,and its crystalline domain size is approximately 30 μm,and the thickness is 0.65 nm.Since the synthesis of MoS_(2)-3 R is restrained,the electronic transport properties of MoS_(2) with different layers were investigated,revealing that those properties equal with those of MoS_(2) samples prepared by exfoliation methods. 展开更多
关键词 Molybdenum disulfide Chemical vapor deposition Raman spectra Atomic force microscope electronic transport properties
原文传递
Effect of Gate Electric Field on Single Organic Molecular Devices
16
作者 李宗良 傅潇潇 +1 位作者 张广平 王传奎 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第2期185-190,I0004,共7页
Based on the first-principles computational method and elastic scattering Green's function theory, we have investigated the effect of gate electric field on electronic transport properties of a series of single organ... Based on the first-principles computational method and elastic scattering Green's function theory, we have investigated the effect of gate electric field on electronic transport properties of a series of single organic molecular junctions theoretically. The numerical results show that the molecular junctions that have redox centers and relatively large dipole moments parallel gate direction can respond to the gate electric field remarkably. The current-voltage properties of 2,5-dimethyl-thiophene-dithiol present N-channel-metal-oxide-semiconductorlike characteristics. Its distinct current-voltage properties can be understood from the evo- lution of eigenvalues, coupling energies, and atomic charges with gate electric field. 展开更多
关键词 Gate electric field Molecular junction electronic transport property
下载PDF
Negative differential resistance behavior in doped C_(82) molecular devices
17
作者 徐慧 贾姝婷 陈灵娜 《Journal of Central South University》 SCIE EI CAS 2012年第2期299-303,共5页
By using the first-principle calculations and nonequilibrium Green functions method, the electronic transport properties of molecular devices constructed by C82, C80BN and C80N2 were studied. The results show that the... By using the first-principle calculations and nonequilibrium Green functions method, the electronic transport properties of molecular devices constructed by C82, C80BN and C80N2 were studied. The results show that the electronic transport properties of molecular devices are affected by doped atoms. Negative differential resistance (NDR) behavior can be observed in certain bias regions for C82 and C80BN molecular devices but cannot be observed for C80N2 molecular device. A mechanism for the negative differential resistance behavior was suggested. 展开更多
关键词 electronic transport properties negative differential resistance FIRST-PRINCIPLE molecular device
下载PDF
Thermochemical Nonequilibrium 2D Modeling of Nitrogen Inductively Coupled Plasma Flow 被引量:2
18
作者 YU Minghao Yusuke TAKAHASHI +4 位作者 Hisashi KIHARA Ken-ichi ABE Kazuhiko YAMADA Takashi ABE Satoshi MIYATANI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第9期749-760,共12页
Two-dimensional(2D) numerical simulations of thermochemical nonequilibrium inductively coupled plasma(ICP) flows inside a 10-kW inductively coupled plasma wind tunnel(ICPWT) were carried out with nitrogen as the... Two-dimensional(2D) numerical simulations of thermochemical nonequilibrium inductively coupled plasma(ICP) flows inside a 10-kW inductively coupled plasma wind tunnel(ICPWT) were carried out with nitrogen as the working gas.Compressible axisymmetric NavierStokes(N-S) equations coupled with magnetic vector potential equations were solved.A fourtemperature model including an improved electron-vibration relaxation time was used to model the internal energy exchange between electron and heavy particles.The third-order accuracy electron transport properties(3rd AETP) were applied to the simulations.A hybrid chemical kinetic model was adopted to model the chemical nonequilibrium process.The flow characteristics such as thermal nonequilibrium,inductive discharge,effects of Lorentz force were made clear through the present study.It was clarified that the thermal nonequilibrium model played an important role in properly predicting the temperature field.The prediction accuracy can be improved by applying the 3rd AETP to the simulation for this ICPWT. 展开更多
关键词 inductively coupled plasma NONEQUILIBRIUM electron transport properties magnetic vector potential
下载PDF
The effects of contact configurations on the rectification of dipyrimidinyl-diphenyl diblock molecular junctions
19
作者 张广平 胡贵超 +1 位作者 李宗良 王传奎 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期389-394,共6页
The transport properties of a conjugated dipyrimidinyl-diphenyl diblock oligomer sandwiched between two gold electrodes, as recently reported by [Diez-Perez et al. Nature Chem. 1 635 (2009)], are theoretically inves... The transport properties of a conjugated dipyrimidinyl-diphenyl diblock oligomer sandwiched between two gold electrodes, as recently reported by [Diez-Perez et al. Nature Chem. 1 635 (2009)], are theoretically investigated using the fully self-consistent nonequilibrium Green's function method combined with density functional theory. Two kinds of symmetrical anchoring geometries are considered. Calculated current-voltage curves show that the contact structure has a strong effect on the rectification behaviour of the molecular diode. For the equilateral triangle configuration, pronounced rectification behaviour comparable to the experimental measurement is revealed, and the theoretical analysis indicates that the observed rectification characteristic results from the asymmetric shift of the perturbed molecular energy levels under bias voltage. While for the tetrahedron configuration, both rectification and negative differential conductivity behaviours are observed. The calculated results further prove the close dependence of the transporting characteristics of molecular junctions on contact configuration. 展开更多
关键词 molecular electronic device RECTIFICATION electronic transport property
下载PDF
Rational Design of Star-shaped Molecules with Benzene Core and Naphthalimide Derivatives End Groups as Organic Light-emitting Materials
20
作者 张立萍 柴万东 靳瑞发 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第12期1811-1818,共8页
A series of star-shaped molecules with benzene core and naphthalimides derivatives end groups have been designed to explore their optical,electronic,and charge transport properties as charge transport and/or luminesce... A series of star-shaped molecules with benzene core and naphthalimides derivatives end groups have been designed to explore their optical,electronic,and charge transport properties as charge transport and/or luminescent materials for organic light-emitting diodes(OLEDs). The frontier molecular orbitals(FMOs) analysis has turned out that the vertical electronic transitions of absorption and emission are characterized as intramolecular charge transfer(ICT). The calculated results show that the optical and electronic properties of star-shaped molecules are affected by the substituent groups in N-position of 1,8-naphthalimide ring. Our results suggest that star-shaped molecules with n-butyl(1),benzene(2),thiophene(3),thiophene S?,S?-dioxide(4),benzo[c][1,2,5]thiadiazole(5),and 2,7a-dihydrobenzo[d]thiazole(6) fragments are expected to be promising candidates for luminescent and electron transport materials for OLEDs. This study should be helpful in further theoretical investigations on such kind of systems and also to the experimental study for charge transport and/or luminescent materials for OLEDs. 展开更多
关键词 1 8-naphthalimide derivatives optical and electronic properties charge transport property luminescent materials organic light-emitting diodes(OLEDs)
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部