The coupling effects of electrical pulse,temperature,strain rate,and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized.The isothermal tensile test and electrically...The coupling effects of electrical pulse,temperature,strain rate,and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized.The isothermal tensile test and electrically-assisted isothermal tensile test were performed at the same temperature,and three typical models were further embedded in ABAQUS/Explicit for numerical simulation to illustrate the electroplastic effect.The results show that electric pulse reduces the deformation resistance but enhances the elongation greatly.The calibration accuracy of the proposed modified Lim−Huh model for highly nonlinear and coupled dynamic hardening behavior is not much improved compared to the modified Kocks−Mecking model.Moreover,the artificial neural network model is very suitable to describe the macromechenical response of materials under the coupling effect of different variables.展开更多
The electroplastic effect in AZ31B magnesium alloy sheet was investigated through uniaxial tensile tests. In order to show the athermal effect of the electrical pulses, two types of uniaxial tensile tests at the same ...The electroplastic effect in AZ31B magnesium alloy sheet was investigated through uniaxial tensile tests. In order to show the athermal effect of the electrical pulses, two types of uniaxial tensile tests at the same testing temperature were carried out: uniaxial tension in environmental cabinet and uniaxial tension with electrical pulses. In addition, the distribution of temperature field in the cross-section area during uniaxial tension with electrical pulses was simulated. The results show that the distribution of temperature field along the cross-section area is homogeneous. By comparing the true stress?true strain curves of AZ31B alloy under uniaxial tensile tests, the athermal effect with electrical pulses was confirmed. The microstructure evolution after the uniaxial tension was studied by optical microscopy. The results indicate that the electrical pulses induced dynamic recrystallization plays an important role in the decrease of flow stress. Finally, a flow stress model of AZ31B sheet taking the influence of electroplastic effect into account was proposed and validated. The results demonstrate that the calculated data fit the experimental data well.展开更多
Effects of electropulsing treatment(EPT)on the microstructural evolution and mechanical properties of a cold-rolled 316 L austenitic stainless steel with nano-lamellar structure were investigated.The EPT experiments w...Effects of electropulsing treatment(EPT)on the microstructural evolution and mechanical properties of a cold-rolled 316 L austenitic stainless steel with nano-lamellar structure were investigated.The EPT experiments were carried out with the electric current direction along the rolling direction(RD)and the transverse direction(TD)of the samples,respectively.Significant anisotropic electroplastic effects for the RD and TD specimens,i.e.,reduced hardness/strength and enhanced ductility,were obtained owing to the different recrystallization behaviors of the RD and TD specimens during EPT.The RD specimens after EPT with larger recrystallized grain size and higher volume fraction of recrystallization show lower strength and higher elongation than that of the TD specimens.The main reason might be attributed to the change of the current direction in the two kinds of samples,which results in the different sensitivity of the microstructures to thermal and athermal effects during EPT.展开更多
Influence of different electric current modes (pulse and direct) on occurrence of the electroplastic effect under uniaxialtension in the coarse-grained alloys with martensite transformations is investigated. The mat...Influence of different electric current modes (pulse and direct) on occurrence of the electroplastic effect under uniaxialtension in the coarse-grained alloys with martensite transformations is investigated. The materials are shape memoryTi49.3Niso.7 alloy and metastable austenite transformation-induced plasticity (TRIP) steel. The paper contains experimentalresults of current impact on the "stress-strain" curves of the material. It has been taken an experimental measurement ofthe sample temperature during the test. It is shown that the shape of a stress-strain curves and type of the serrate plasticflow, connected with the martensitic transformation and electroplastic effect, depend on the current modes. Impact of pulsecurrent and direct current suppresses shape memory and TRIP effect.展开更多
The electroplastic(EP) tensile properties of 5A90 Al–Li alloys compared with thermal tension were investigated.The microstructural variation at different conditions was observed by SEM and TEM.The current density s...The electroplastic(EP) tensile properties of 5A90 Al–Li alloys compared with thermal tension were investigated.The microstructural variation at different conditions was observed by SEM and TEM.The current density significantly influences the elongation and the flow stress.With increasing current density,wider and deeper dimples on the fracture surfaces and less dislocation density and pile-ups in the EP tension samples were observed compared with roomtemperature and thermal tension,which indicates the plasticity improvement and flow stress reduction.The EP effect(EPE) mainly results from a comprehensive function of Joule heating and pure EPE.Among them,Joule heating effect is perhaps a dominant factor.展开更多
In this work, the influence of pulse current parameters on springback and bending force of magnesium alloy duringelectropulse-assisted (EPA) V-bending was investigated. The experimental results showed that pulse cur...In this work, the influence of pulse current parameters on springback and bending force of magnesium alloy duringelectropulse-assisted (EPA) V-bending was investigated. The experimental results showed that pulse current can effec-tively reduce the springback and the bending force compared to the experiments without current. The frequency has a moresignificant influence on bending force and springback than electric current density. Electroplastic (EP) effect begins towork when pulse current parameters reach a threshold value. To explore the mechanism of EPA V-bending, themicrostructure evolution and fracture surface of the bending specimen were studied. It was found that pulse current canpromote the occurrence of dynamic recrystallization (DRX) of magnesium alloy compared to traditional hot formingprocess. The fracture mode of AZ31B under EPA V-bending evolves from brittle fracture to ductile fracture withincreasing pulse current parameters. Based on the discussion of athermal and thermal effects of EP effect, the mechanismof pulse current to promote DRX is studied and athermal effect is proved to exist.展开更多
基金the financial supports from the National Natural Science Foundation of China(Nos.52075423,U2141214).
文摘The coupling effects of electrical pulse,temperature,strain rate,and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized.The isothermal tensile test and electrically-assisted isothermal tensile test were performed at the same temperature,and three typical models were further embedded in ABAQUS/Explicit for numerical simulation to illustrate the electroplastic effect.The results show that electric pulse reduces the deformation resistance but enhances the elongation greatly.The calibration accuracy of the proposed modified Lim−Huh model for highly nonlinear and coupled dynamic hardening behavior is not much improved compared to the modified Kocks−Mecking model.Moreover,the artificial neural network model is very suitable to describe the macromechenical response of materials under the coupling effect of different variables.
基金Projects(50975174,51275297)supported by the National Natural Science Foundation of ChinaProject(20100073110044)supported by the Education Ministry of China
文摘The electroplastic effect in AZ31B magnesium alloy sheet was investigated through uniaxial tensile tests. In order to show the athermal effect of the electrical pulses, two types of uniaxial tensile tests at the same testing temperature were carried out: uniaxial tension in environmental cabinet and uniaxial tension with electrical pulses. In addition, the distribution of temperature field in the cross-section area during uniaxial tension with electrical pulses was simulated. The results show that the distribution of temperature field along the cross-section area is homogeneous. By comparing the true stress?true strain curves of AZ31B alloy under uniaxial tensile tests, the athermal effect with electrical pulses was confirmed. The microstructure evolution after the uniaxial tension was studied by optical microscopy. The results indicate that the electrical pulses induced dynamic recrystallization plays an important role in the decrease of flow stress. Finally, a flow stress model of AZ31B sheet taking the influence of electroplastic effect into account was proposed and validated. The results demonstrate that the calculated data fit the experimental data well.
基金supported by the National Natural Science Foundation of China(Grants No.51501196,51975552 and 50711007)the IMR foundation for“Young merit scholars”+1 种基金the Youth Innovation Promotion Association CAS(No.2017235)the LiaoNing Revitalization Talents Program under Grant No.XLYC1808027。
文摘Effects of electropulsing treatment(EPT)on the microstructural evolution and mechanical properties of a cold-rolled 316 L austenitic stainless steel with nano-lamellar structure were investigated.The EPT experiments were carried out with the electric current direction along the rolling direction(RD)and the transverse direction(TD)of the samples,respectively.Significant anisotropic electroplastic effects for the RD and TD specimens,i.e.,reduced hardness/strength and enhanced ductility,were obtained owing to the different recrystallization behaviors of the RD and TD specimens during EPT.The RD specimens after EPT with larger recrystallized grain size and higher volume fraction of recrystallization show lower strength and higher elongation than that of the TD specimens.The main reason might be attributed to the change of the current direction in the two kinds of samples,which results in the different sensitivity of the microstructures to thermal and athermal effects during EPT.
基金supported by the Competitiveness Program of the National Research Nuclear University MEPhI(Moscow Engineering Physics Institute)the Ministry of Education and Science of the Russian Federation No.02.A03.21.0005,27.08.2013,and RFBR(project#16-58-48001)
文摘Influence of different electric current modes (pulse and direct) on occurrence of the electroplastic effect under uniaxialtension in the coarse-grained alloys with martensite transformations is investigated. The materials are shape memoryTi49.3Niso.7 alloy and metastable austenite transformation-induced plasticity (TRIP) steel. The paper contains experimentalresults of current impact on the "stress-strain" curves of the material. It has been taken an experimental measurement ofthe sample temperature during the test. It is shown that the shape of a stress-strain curves and type of the serrate plasticflow, connected with the martensitic transformation and electroplastic effect, depend on the current modes. Impact of pulsecurrent and direct current suppresses shape memory and TRIP effect.
基金financially supported by the National Natural Science Foundation of China (No.51105248)
文摘The electroplastic(EP) tensile properties of 5A90 Al–Li alloys compared with thermal tension were investigated.The microstructural variation at different conditions was observed by SEM and TEM.The current density significantly influences the elongation and the flow stress.With increasing current density,wider and deeper dimples on the fracture surfaces and less dislocation density and pile-ups in the EP tension samples were observed compared with roomtemperature and thermal tension,which indicates the plasticity improvement and flow stress reduction.The EP effect(EPE) mainly results from a comprehensive function of Joule heating and pure EPE.Among them,Joule heating effect is perhaps a dominant factor.
基金financial support from the Natural Science Foundation of Shandong Province (No. ZR2016EEM25)
文摘In this work, the influence of pulse current parameters on springback and bending force of magnesium alloy duringelectropulse-assisted (EPA) V-bending was investigated. The experimental results showed that pulse current can effec-tively reduce the springback and the bending force compared to the experiments without current. The frequency has a moresignificant influence on bending force and springback than electric current density. Electroplastic (EP) effect begins towork when pulse current parameters reach a threshold value. To explore the mechanism of EPA V-bending, themicrostructure evolution and fracture surface of the bending specimen were studied. It was found that pulse current canpromote the occurrence of dynamic recrystallization (DRX) of magnesium alloy compared to traditional hot formingprocess. The fracture mode of AZ31B under EPA V-bending evolves from brittle fracture to ductile fracture withincreasing pulse current parameters. Based on the discussion of athermal and thermal effects of EP effect, the mechanismof pulse current to promote DRX is studied and athermal effect is proved to exist.