By using a double electron probe the electron density and electron temperature were measured during the low temperature plasma (LTP) treatment of wool fabrics. The dependences of the electron density upon the power,...By using a double electron probe the electron density and electron temperature were measured during the low temperature plasma (LTP) treatment of wool fabrics. The dependences of the electron density upon the power, pressure and the plasma-treating time was studied. The effects on the wool fabrics' shrinkage were studied. The results showed that the angle of the double electrostatic probe and the area of the treated fabrics had a strong impact on the density measurement. The felt-proof property of wool fabrics treated with an argon plasma was better than that with a nitrogen plasma. The gas, power and pressure of the LTP treatment all affected the electron density. The electron density increased with the increase in power and pressure. The electron density did not change significantly with treating time, in a certain range of both power and pressure of the LTP treatment.展开更多
We present in this paper the comparison of an electric double layer(DL)in argon helicon plasma and magnetized direct current(DC)discharge plasma.DL in high-density argon helicon plasma of 13.56 MHz RF discharge was in...We present in this paper the comparison of an electric double layer(DL)in argon helicon plasma and magnetized direct current(DC)discharge plasma.DL in high-density argon helicon plasma of 13.56 MHz RF discharge was investigated experimentally by a floating electrostatic probe and local optical emission spectroscopy(LOES).The DL characteristics at different operating parameters,including RF power(300-1500 W),tube diameter(8-60 mm),and external magnetic field(0-300 G),were measured.For comparison,DL in magnetized plasma channel of a DC discharge under different conditions was also measured experimentally.The results show that in both cases,DL appears in a divergent magnetic field where the magnetic field gradient is the largest and when the plasma density is sufficiently high.DL strength(or potential drop of DL)increases with the magnetic field in two different structures.It is suggested that the electric DL should be a common phenomenon in dense plasma under a gradient external magnetic field.DL in magnetized plasmas can be controlled properly by magnetic field structure and discharge mode(hence the plasma density).展开更多
We measured electron temperatures through a hollow cathode-type discharge tube using several different floating probe methods. This method detected a shift in the floating potential when an AC voltage was applied to a...We measured electron temperatures through a hollow cathode-type discharge tube using several different floating probe methods. This method detected a shift in the floating potential when an AC voltage was applied to a probe through an intermediary blocking capacitor. The shift in the floating potential is described as a function of the electron temperature and the applied AC voltage. In this study, the effects of the frequency and waveform on the electron temperatures were systematically investigated. The electron temperature measured when using the floating probe method with applied sinusoidal and triangular voltages was lower than that measured with an applied rectangular voltage.The value in the high frequency range was close to that of the tail electron temperature.展开更多
This study presents a novel floating probe method to measure electron temperatures using a hollow cathode-type discharge tube. The proposed method detects a shift in the floating potential when an AC voltage is applie...This study presents a novel floating probe method to measure electron temperatures using a hollow cathode-type discharge tube. The proposed method detects a shift in the floating potential when an AC voltage is applied to a probe through an intermediary blocking capacitor. The shift in the floating potential is described as a function of the electron temperature and the applied AC voltage. The floating probe method is simpler than the Langmuir probe method because it does not require the measurement of volt-ampere characteristics. As the input AC voltage increases, the electron temperature converges. The electron temperature measured using the floating probe method with an applied sinusoidal voltage shows a value close to the first (tail) electron temperature in the range of the floating potential.展开更多
基金supported by the Municipal Natural Science Foundation of Beijing of China(No.KZ200710016006)
文摘By using a double electron probe the electron density and electron temperature were measured during the low temperature plasma (LTP) treatment of wool fabrics. The dependences of the electron density upon the power, pressure and the plasma-treating time was studied. The effects on the wool fabrics' shrinkage were studied. The results showed that the angle of the double electrostatic probe and the area of the treated fabrics had a strong impact on the density measurement. The felt-proof property of wool fabrics treated with an argon plasma was better than that with a nitrogen plasma. The gas, power and pressure of the LTP treatment all affected the electron density. The electron density increased with the increase in power and pressure. The electron density did not change significantly with treating time, in a certain range of both power and pressure of the LTP treatment.
基金supported by National Natural Science Foundation of China(No.11975047)。
文摘We present in this paper the comparison of an electric double layer(DL)in argon helicon plasma and magnetized direct current(DC)discharge plasma.DL in high-density argon helicon plasma of 13.56 MHz RF discharge was investigated experimentally by a floating electrostatic probe and local optical emission spectroscopy(LOES).The DL characteristics at different operating parameters,including RF power(300-1500 W),tube diameter(8-60 mm),and external magnetic field(0-300 G),were measured.For comparison,DL in magnetized plasma channel of a DC discharge under different conditions was also measured experimentally.The results show that in both cases,DL appears in a divergent magnetic field where the magnetic field gradient is the largest and when the plasma density is sufficiently high.DL strength(or potential drop of DL)increases with the magnetic field in two different structures.It is suggested that the electric DL should be a common phenomenon in dense plasma under a gradient external magnetic field.DL in magnetized plasmas can be controlled properly by magnetic field structure and discharge mode(hence the plasma density).
文摘We measured electron temperatures through a hollow cathode-type discharge tube using several different floating probe methods. This method detected a shift in the floating potential when an AC voltage was applied to a probe through an intermediary blocking capacitor. The shift in the floating potential is described as a function of the electron temperature and the applied AC voltage. In this study, the effects of the frequency and waveform on the electron temperatures were systematically investigated. The electron temperature measured when using the floating probe method with applied sinusoidal and triangular voltages was lower than that measured with an applied rectangular voltage.The value in the high frequency range was close to that of the tail electron temperature.
文摘This study presents a novel floating probe method to measure electron temperatures using a hollow cathode-type discharge tube. The proposed method detects a shift in the floating potential when an AC voltage is applied to a probe through an intermediary blocking capacitor. The shift in the floating potential is described as a function of the electron temperature and the applied AC voltage. The floating probe method is simpler than the Langmuir probe method because it does not require the measurement of volt-ampere characteristics. As the input AC voltage increases, the electron temperature converges. The electron temperature measured using the floating probe method with an applied sinusoidal voltage shows a value close to the first (tail) electron temperature in the range of the floating potential.