The effect of rare earth element on the solidification behavior of Al-Mg alloy was investigated in a directional solidification apparatus.It was found that during the solidification process.the rare earth element segr...The effect of rare earth element on the solidification behavior of Al-Mg alloy was investigated in a directional solidification apparatus.It was found that during the solidification process.the rare earth element segregated in the liquid at sold-liquid interface,changed the solidification morphology and reduced the secondary arm spacing markedly.展开更多
Thermodynamic properties and electrochemical behaviors of gold and its associated elements, such as silver, copper, nickel and iron, in various complex agent solutions were studied. Within CS(NH2)2, S2O2-3 and SCN- ...Thermodynamic properties and electrochemical behaviors of gold and its associated elements, such as silver, copper, nickel and iron, in various complex agent solutions were studied. Within CS(NH2)2, S2O2-3 and SCN- systems, alkaline thiourea is the optimal nontoxic lixiviating agent substituting cyanide from the viewpoint of thermodynamics. The electrochemical study indicates that the anodic dissolution current densities of gold are 2.616, (1.805,) 1.267, 1.088, 0.556, and 0.145 mA·cm-2 respectively in the solutions of cyanide, alkaline thiourea containing Na2SiO3, SCN-, acidic thiourea, alkaline thiourea and thiosulfate at the potential of 0.500 V. Comparing various lixiviating agents, the alkaline thiourea solution containing Na2SiO3 is of prominent selectivity in leaching gold, in the potential range from 0.500 to 0.600 V, which is most efficient for leaching gold selectively instead of cyanide. The effect on leaching gold is similar to that in the cyanide system.展开更多
This study examines the behavior of trace- and rare-earth elements (REE) in different hydrothermal alteration facies (silicic, advanced argillic and argillic) of Cijulang high-sulfidation epithermal gold deposit, West...This study examines the behavior of trace- and rare-earth elements (REE) in different hydrothermal alteration facies (silicic, advanced argillic and argillic) of Cijulang high-sulfidation epithermal gold deposit, West Java, Indonesia. The results of the study indicate that remarkable differences in the behavior of trace elements and REE are observed in the studied alteration facies. All REE in the silicic facies are strongly depleted. In advanced argillic facies, Heavy rare-earth elements (HREE) are strongly depleted whereas light rare earth elements (LREE) are quite enriched. REE concentrations in the argillic facies show little or no variation with respect to fresh rock counterparts. A strong depletion of REE in the silicic facies is likely to be favored by the highly acidic nature of the hydrothermal fluids, the abundance of complexing ions such as Cl ˉ, F ˉ, and in the hydrothermal solutions and the absence of the secondary minerals that can fix the REE in their crystal structures. An apparent immobility of LREE in advanced argillic facies is possibly due to the presence of alunite. The immobility of REE in the argillic facies suggests the higher pH of the fluids, the lower water/rock ratios and the presence of the phyllosilicates minerals. -展开更多
Linear motors generate high heat and cause significant deformation in high speed direct feed drive mechanisms.It is relevant to estimate their deformation behavior to improve their application in precision machine too...Linear motors generate high heat and cause significant deformation in high speed direct feed drive mechanisms.It is relevant to estimate their deformation behavior to improve their application in precision machine tools.This paper describes a method to estimate its thermal deformation based on updated finite element(FE)model methods.Firstly,a FE model is established for a linear motor drive test rig that includes the correlation between temperature rise and its resulting deformation.The relationship between the input and output variables of the FE model is identified with a modified multivariate input/output least square support vector regression machine.Additionally,the temperature rise and displacements at some critical points on the mechanism are obtained experimentally by a system of thermocouples and an interferometer.The FE model is updated through intelligent comparison between the experimentally measured values and the results from the regression machine.The experiments for testing thermal behavior along with the updated FE model simulations is conducted on the test rig in reciprocating cycle drive conditions.The results show that the intelligently updated FE model can be implemented to analyze the temperature variation distribution of the mechanism and to estimate its thermal behavior.The accuracy of the thermal behavior estimation with the optimally updated method can be more than double that of the initial theoretical FE model.This paper provides a simulation method that is effective to estimate the thermal behavior of the direct feed drive mechanism with high accuracy.展开更多
High frequency transformer is used in many applications among the Switch Mode Power Supply (SMPS), high voltage pulse power and etc can be mentioned. Regarding that the core of these transformers is often the ferrite ...High frequency transformer is used in many applications among the Switch Mode Power Supply (SMPS), high voltage pulse power and etc can be mentioned. Regarding that the core of these transformers is often the ferrite core;their functions partly depend on this core characteristic. One of the characteristics of the ferrite core is thermal behavior that should be paid attention to because it affects the transformer function and causes heat generation. In this paper, a typical high frequency transformer with ferrite core is designed and simulated in ANSYS software. Temperature rise due to winding current (Joule-heat) is considered as heat generation source for thermal behavior analysis of the transformer. In this simulation, the temperature rise and heat distribution are studied and the effects of parameters such as flux density, winding loss value, using a fan to cool the winding and core and thermal conductivity are investigated.展开更多
A new method for three-dimensional simulation of the interaction between the gas and the solid around is developed.The effects of the gas on the thermal-mechanical behaviors within the surrounded solid are performed b...A new method for three-dimensional simulation of the interaction between the gas and the solid around is developed.The effects of the gas on the thermal-mechanical behaviors within the surrounded solid are performed by replacing the internal gas with an equivalent solid in the modeling,which can make it convenient to simulate the thermal-mechanical coupling effects in the solid research objects with gases in them.The applied thermal expansion coefficient,Young's modulus and Poisson's ratio of the equivalent solid material are derived.A series of tests have been conducted;and the proposed equivalent solid method to simulate the gas effects is validated.展开更多
The aim of the paper is to discover the general creep mechanisms for the short fiber reinforcement matrix composites (MMCs) under uniaxial stress states and to build a relationship between the macroscopic steady creep...The aim of the paper is to discover the general creep mechanisms for the short fiber reinforcement matrix composites (MMCs) under uniaxial stress states and to build a relationship between the macroscopic steady creep behavior and the material micro geometric parameters. The unit cell models were used to calculate the macroscopic creep behavior with different micro geometric parameters of fibers on different loading directions. The influence of the geometric parameters of the fibers and loading directions on the macroscopic creep behavior had been obtained, and described quantitatively. The matrix/fiber interface had been considered by a third layer, matrix/fiber interlayer, in the unit cells with different creep properties and thickness. Based on the numerical results of the unit cell models, a statistic model had been presented for the plane randomly-distributed-fiber MMCs. The fiber breakage had been taken into account in the statistic model for it starts experimentally early in the creep life. With the distribution of the geometric parameters of the fibers, the results of the statistic model agree well with the experiments. With the statistic model, the influence of the geometric parameters and the breakage of the fibers as well as the properties and thickness of, the interlayer on the macroscopic steady creep rate have been discussed.展开更多
The asymptotic convergence of the solution of the parabolic equation is proved. By the eigenvalues estimation, we obtain that the approximate solutions by the finite difference method and the finite element method are...The asymptotic convergence of the solution of the parabolic equation is proved. By the eigenvalues estimation, we obtain that the approximate solutions by the finite difference method and the finite element method are asymptotically convergent. Both methods are considered in continnous time.展开更多
The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced conc...The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.展开更多
文摘The effect of rare earth element on the solidification behavior of Al-Mg alloy was investigated in a directional solidification apparatus.It was found that during the solidification process.the rare earth element segregated in the liquid at sold-liquid interface,changed the solidification morphology and reduced the secondary arm spacing markedly.
文摘Thermodynamic properties and electrochemical behaviors of gold and its associated elements, such as silver, copper, nickel and iron, in various complex agent solutions were studied. Within CS(NH2)2, S2O2-3 and SCN- systems, alkaline thiourea is the optimal nontoxic lixiviating agent substituting cyanide from the viewpoint of thermodynamics. The electrochemical study indicates that the anodic dissolution current densities of gold are 2.616, (1.805,) 1.267, 1.088, 0.556, and 0.145 mA·cm-2 respectively in the solutions of cyanide, alkaline thiourea containing Na2SiO3, SCN-, acidic thiourea, alkaline thiourea and thiosulfate at the potential of 0.500 V. Comparing various lixiviating agents, the alkaline thiourea solution containing Na2SiO3 is of prominent selectivity in leaching gold, in the potential range from 0.500 to 0.600 V, which is most efficient for leaching gold selectively instead of cyanide. The effect on leaching gold is similar to that in the cyanide system.
文摘This study examines the behavior of trace- and rare-earth elements (REE) in different hydrothermal alteration facies (silicic, advanced argillic and argillic) of Cijulang high-sulfidation epithermal gold deposit, West Java, Indonesia. The results of the study indicate that remarkable differences in the behavior of trace elements and REE are observed in the studied alteration facies. All REE in the silicic facies are strongly depleted. In advanced argillic facies, Heavy rare-earth elements (HREE) are strongly depleted whereas light rare earth elements (LREE) are quite enriched. REE concentrations in the argillic facies show little or no variation with respect to fresh rock counterparts. A strong depletion of REE in the silicic facies is likely to be favored by the highly acidic nature of the hydrothermal fluids, the abundance of complexing ions such as Cl ˉ, F ˉ, and in the hydrothermal solutions and the absence of the secondary minerals that can fix the REE in their crystal structures. An apparent immobility of LREE in advanced argillic facies is possibly due to the presence of alunite. The immobility of REE in the argillic facies suggests the higher pH of the fluids, the lower water/rock ratios and the presence of the phyllosilicates minerals. -
基金Supported by National Natural Science Foundation of China(Grant No.51005158)National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2013ZX04008-011-02)
文摘Linear motors generate high heat and cause significant deformation in high speed direct feed drive mechanisms.It is relevant to estimate their deformation behavior to improve their application in precision machine tools.This paper describes a method to estimate its thermal deformation based on updated finite element(FE)model methods.Firstly,a FE model is established for a linear motor drive test rig that includes the correlation between temperature rise and its resulting deformation.The relationship between the input and output variables of the FE model is identified with a modified multivariate input/output least square support vector regression machine.Additionally,the temperature rise and displacements at some critical points on the mechanism are obtained experimentally by a system of thermocouples and an interferometer.The FE model is updated through intelligent comparison between the experimentally measured values and the results from the regression machine.The experiments for testing thermal behavior along with the updated FE model simulations is conducted on the test rig in reciprocating cycle drive conditions.The results show that the intelligently updated FE model can be implemented to analyze the temperature variation distribution of the mechanism and to estimate its thermal behavior.The accuracy of the thermal behavior estimation with the optimally updated method can be more than double that of the initial theoretical FE model.This paper provides a simulation method that is effective to estimate the thermal behavior of the direct feed drive mechanism with high accuracy.
文摘High frequency transformer is used in many applications among the Switch Mode Power Supply (SMPS), high voltage pulse power and etc can be mentioned. Regarding that the core of these transformers is often the ferrite core;their functions partly depend on this core characteristic. One of the characteristics of the ferrite core is thermal behavior that should be paid attention to because it affects the transformer function and causes heat generation. In this paper, a typical high frequency transformer with ferrite core is designed and simulated in ANSYS software. Temperature rise due to winding current (Joule-heat) is considered as heat generation source for thermal behavior analysis of the transformer. In this simulation, the temperature rise and heat distribution are studied and the effects of parameters such as flux density, winding loss value, using a fan to cool the winding and core and thermal conductivity are investigated.
基金Supported by Natural Science Foundation of China(Nos.10772049 and 11072062)Research and Development Program of China(863 Program, No.2009AA04Z408)+1 种基金Natural Science Foundation of Shanghai(No.06ZR14009)Pujiang Scholar Program and the Wangdao Scholar Program(No.08076) of Fudan University
文摘A new method for three-dimensional simulation of the interaction between the gas and the solid around is developed.The effects of the gas on the thermal-mechanical behaviors within the surrounded solid are performed by replacing the internal gas with an equivalent solid in the modeling,which can make it convenient to simulate the thermal-mechanical coupling effects in the solid research objects with gases in them.The applied thermal expansion coefficient,Young's modulus and Poisson's ratio of the equivalent solid material are derived.A series of tests have been conducted;and the proposed equivalent solid method to simulate the gas effects is validated.
文摘The aim of the paper is to discover the general creep mechanisms for the short fiber reinforcement matrix composites (MMCs) under uniaxial stress states and to build a relationship between the macroscopic steady creep behavior and the material micro geometric parameters. The unit cell models were used to calculate the macroscopic creep behavior with different micro geometric parameters of fibers on different loading directions. The influence of the geometric parameters of the fibers and loading directions on the macroscopic creep behavior had been obtained, and described quantitatively. The matrix/fiber interface had been considered by a third layer, matrix/fiber interlayer, in the unit cells with different creep properties and thickness. Based on the numerical results of the unit cell models, a statistic model had been presented for the plane randomly-distributed-fiber MMCs. The fiber breakage had been taken into account in the statistic model for it starts experimentally early in the creep life. With the distribution of the geometric parameters of the fibers, the results of the statistic model agree well with the experiments. With the statistic model, the influence of the geometric parameters and the breakage of the fibers as well as the properties and thickness of, the interlayer on the macroscopic steady creep rate have been discussed.
文摘The asymptotic convergence of the solution of the parabolic equation is proved. By the eigenvalues estimation, we obtain that the approximate solutions by the finite difference method and the finite element method are asymptotically convergent. Both methods are considered in continnous time.
文摘The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.