期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Parameter identifications for a rotor system based on its finite element model and with varying speeds 被引量:4
1
作者 Qingkai Han Hongliang Yao Bangchun Wen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期299-303,共5页
In order to achieve prediction for vibration of rotating machinery, an accurate finite element (FE) model and an efficient parameter identification method of the rotor system are required. In this research, a test r... In order to achieve prediction for vibration of rotating machinery, an accurate finite element (FE) model and an efficient parameter identification method of the rotor system are required. In this research, a test rig is used as a prototype of a rotor system to validate a novel parameter identification technique based on an FE model. Rotor shaft vibration at varying operating speeds is measured and correlated with the FE results. Firstly, the theories of the FE modelling and identification technique are introduced. Then disk unbalance parameter, stiffness and damping coefficients of the bearing supports on the test rig are identified. The calculated responses of the FE model with identified parameters are studied in comparison with the experimental results. 展开更多
关键词 Rotor system · Finite element model ·Parameter identification· Model validation
下载PDF
Influence of process parameters on deep drawing of AA6111 aluminum alloy at elevated temperatures 被引量:8
2
作者 马闻宇 王宝雨 +2 位作者 傅垒 周靖 黄鸣东 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1167-1174,共8页
To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four importa... To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM. 展开更多
关键词 aluminum process parameters finite element method hot drawing analysis of variance analysis of mean
下载PDF
Optimal design of structural parameters for shield cutterhead based on fuzzy mathematics and multi-objective genetic algorithm 被引量:12
3
作者 夏毅敏 唐露 +2 位作者 暨智勇 程永亮 卞章括 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期937-945,共9页
In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters ... In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%. 展开更多
关键词 shield tunneling machine cutterhead structural parameters fuzzy mathematics finite element optimization
下载PDF
Analysis on a Set of 12-parameter Rectangular Plate Element with High Accuracy
4
作者 SHI Dong-yang WANG Cai-xia 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第2期159-165,共7页
It is proved that the so-called a set of 12-parameter rectangular plate elements with high accuracy constructed by using double set parameter method and undetermined method are, in fact, the same one; the real shape f... It is proved that the so-called a set of 12-parameter rectangular plate elements with high accuracy constructed by using double set parameter method and undetermined method are, in fact, the same one; the real shape function space is nothing but the Adini's element's, which has nothing to do with the other high degree terms and leads to a new method for constructing the high accuracy plate elements. This fact has never been seen for other conventional and unconventional, conforming and nonconforming rectangular plate elements, such as Quasi-conforming elements, generalized conforming elements and other double set parameter finite elements. Moreover, such kind of rectangular elements can not be constructed by the conventional finite element methods. 展开更多
关键词 double set parameter element high accuracy Adini's shape function space geometric symmetry new method
下载PDF
Effect of Dimension Parameters on the Torsion Property of A C/SiC Pipe
5
作者 陈超 梅辉 +2 位作者 li jun xu zhenye cheng laifei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期389-393,共5页
Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for pre... Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for preparing the C/SiC pipe with different dimensions. The results show that, with increasing length of pipe, the anti-torsion section coefficient of pipe increases whereas the torsion angle per unit length decreases. Increasing the length can improve the torsion property. Anti-torsion section coefficient rises with increasing internal radius, while the torsion angle per unit length decreases to a constant. With increasing thickness, the anti-torsion section coefficient increases whereas the amplitude decreases gradually, and the torsion angle per unit length is a constant. Increment of internal radius and thickness improves the torsion property finitely. 展开更多
关键词 dimension parameter torsion property finite element C/SiC pipe
下载PDF
Tissue level microstructure and mechanical properties of the femoral head in the proximal femur of fracture patients 被引量:5
6
作者 Linwei Lü Guangwei Meng +3 位作者 He Gong Dong Zhu Jiazi Gao Yubo Fan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第2期259-267,共9页
This study aims to investigate the regional variations of trabecular morphological parameters and mechanical parameters of the femoral head,as well as to determine the relationship between trabecular morphological and... This study aims to investigate the regional variations of trabecular morphological parameters and mechanical parameters of the femoral head,as well as to determine the relationship between trabecular morphological and mechanical parameters.Seven femoral heads from patients with fractured proximal femur were scanned using a micro-CT system.Each femoral head was divided into 12 sub-regions according to the trabecular orientation.One 125 mm^3 trabecular cubic model was reconstructed from each sub-region.A total of 81 trabecular models were reconstructed,except three destroyed sub-regions from two femoral heads during the surgery.Trabecular morphological parameters,i.e.trabecular separation(Tb.Sp),trabecular thickness(Tb.Th),specific bone surface(BS/B V),bone volume fraction(BV/TV),structural model index(SMI),and degree of anisotropy(DA) were measured.Micro-finite element analyses were performed for each cube to obtain the apparent Young's modulus and tissue level von Mises stress distribution under 1%compressive strain along three orthogonal directions,respectively.Results revealed significant regional variations in the morphological parameters(P〈0.05).Young's moduli along the trabecular orientation were significantly higher than those along the other two directions.In general,trabecular mechanical properties in the medial region were lower than those in the lateral region.Trabecular mechanical parameters along the trabecular orientation were significantly correlated with BS/BV,BV/TV,Tb.Th,and DA.In this study,regional variations of microstructural features and mechanical properties in the femoral head of patients with proximal femur fracture were thoroughly investigated at the tissue level.The results of this study will help to elucidate the mechanism of femoral head fracture for reducing fracture risk and developing treatment strategies for the elderly. 展开更多
关键词 Femoral head Trabecular bone Morphological parameters Micro-finite element analysis Apparent level Tissue level
下载PDF
Multiaxial fatigue life prediction of composite materials 被引量:5
7
作者 Jingmeng WENG Weidong WEN Hongjian ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1012-1020,共9页
In order to analyze the stress and strain fields in the fibers and the matrix in composite materials,a fiber-scale unit cell model is established and the corresponding periodical boundary conditions are introduced.Ass... In order to analyze the stress and strain fields in the fibers and the matrix in composite materials,a fiber-scale unit cell model is established and the corresponding periodical boundary conditions are introduced.Assuming matrix cracking as the failure mode of composite materials,an energy-based fatigue damage parameter and a multiaxial fatigue life prediction method are established.This method only needs the material properties of the fibers and the matrix to be known.After the relationship between the fatigue damage parameter and the fatigue life under any arbitrary test condition is established,the multiaxial fatigue life under any other load condition can be predicted.The proposed method has been verified using two different kinds of load forms.One is unidirectional laminates subjected to cyclic off-axis loading,and the other is filament wound composites subjected to cyclic tension-torsion loading.The fatigue lives predicted using the proposed model are in good agreements with the experimental results for both kinds of load forms. 展开更多
关键词 Fatigue damage parameter Finite element analysis Life prediction Multiaxial fatigue Periodical boundary condition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部