Based on the assay of the total content and available content of the trace nutrient elements and the soil pH and organic matter of the soil samples,the characteristic of the available content of the trace nutrient ele...Based on the assay of the total content and available content of the trace nutrient elements and the soil pH and organic matter of the soil samples,the characteristic of the available content of the trace nutrient elements and their affecting factors are studied. The results show that the available B in western Jilin is in a middle level,the content in Nong'an is higher than that in the others; the available Mn is extremely abundant; the available Cu in Nong'an is obviously higher than other areas,and the content in Da'an differs greatly; the available Zn is in a middle level; the severe shortage of available Mo differs between different areas; and the available Fe is extremely abundant. The available Mn,Cu and Fe have significantly positive correlation with their total content; the available B has significantly positive correlation with pH,and Zn has obviously negative correlation with pH; the available Mn and Fe had significantly positive correlation with soil organic matter.展开更多
The present paper is addressed to the finite element method combined with dynamic photoelastic analysis of propagating cracks, that is, on the basis of [1] by Chien Wei-zang, finite elements which incorporate the prop...The present paper is addressed to the finite element method combined with dynamic photoelastic analysis of propagating cracks, that is, on the basis of [1] by Chien Wei-zang, finite elements which incorporate the propagating crack-tip singularity intrinsic to two-dimensional elasticity are employed. THe relation between crack opening length and time step obtained from dynamic photoelaslie analysis is used as a definite condition for solving the dynamic equations and simulating the crack propagations as well As an example, the impact response of dynamie-bending-test specimen is investigated and the dynamic stress-intensity factor obtained from the mentioned finite element analysis and dynamic photoelasticity is in reasonable agreement with each other.展开更多
Aim To present a quantitative method for structural complexity analysis and evaluation of information systems. Methods Based on Petri net modeling and analysis techniques and with the aid of mathematical tools in ge...Aim To present a quantitative method for structural complexity analysis and evaluation of information systems. Methods Based on Petri net modeling and analysis techniques and with the aid of mathematical tools in general net theory(GNT), a quantitative method for structure description and analysis of information systems was introduced. Results The structural complexity index and two related factors, i.e. element complexity factor and connection complexity factor were defined, and the relations between them and the parameters of the Petri net based model of the system were derived. Application example was presented. Conclusion The proposed method provides a theoretical basis for quantitative analysis and evaluation of the structural complexity and can be applied in the general planning and design processes of the information systems.展开更多
The major and trace elements in 110 surface sediment samples collected from the middle of the Bay of Bengal(mid-Bay of Bengal) are analyzed to investigate provenance. Si levels are highest, followed by Al, and the d...The major and trace elements in 110 surface sediment samples collected from the middle of the Bay of Bengal(mid-Bay of Bengal) are analyzed to investigate provenance. Si levels are highest, followed by Al, and the distributions of these two elements are identical. The average CIA*(chemical index of alteration) value is 72.07,indicating that the degree of weathering of the sediments in the study area is intermediate between those of sediments of the Himalayan and Indian rivers. Factor analyses and discrimination function analyses imply that the two main provenances are the Himalayan and the Indian continent. The inverse model calculation of the Tinormalized element ratios of the Bay of Bengal sediments indicate an estimated average contribution of 83.5%and 16.5% from the Himalayan and peninsular Indian rivers to the study area, respectively. The Himalayan source contributes more sediment to the eastern part of the study area, whereas the western part receives more sediment from the Indian Peninsula than did the eastern part. The primary mechanisms for deposition of sediments in the study area are the transport of Himalayan matter by turbidity currents and river-diluted water and the transport of Indian matter to the study area by a surface circulation in the Bay of Bengal, particularly the East India Coastal Current.展开更多
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special fe...The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.展开更多
In this paper a semi-elliptic surface crack problem in an elastic solid of finite size under impact loading is investigated. An analysis is performed by means of fracture dynamics and the finite element method, and a ...In this paper a semi-elliptic surface crack problem in an elastic solid of finite size under impact loading is investigated. An analysis is performed by means of fracture dynamics and the finite element method, and a three-dimensional finite element program is developed to compute the dynamic stress intensity factor. The results reveal that the effects of the solid's boundary surface, crack surface, material inertia and stress wave interactions play significant roles in dynamic fracture.展开更多
Old astrocyte specifically induced substance (OASIS) is an endoplasmic reticulum (ER) stress transducer specifically expressed in astrocytes and osteoblasts. OASIS regulates the differentiation of neural precursor...Old astrocyte specifically induced substance (OASIS) is an endoplasmic reticulum (ER) stress transducer specifically expressed in astrocytes and osteoblasts. OASIS regulates the differentiation of neural precursor cells into astrocytes in the central nervous system. This study aimed to elucidate the involvement of ER stress responses stimulated via OASIS in astrogliosis following spinal cord injury. In a mouse model of spinal cord contusion injury, OASIS mRNA and protein expression were evaluated at days 7 and 14. A significant increase in OASIS mRNA on day 7 and an increase in protein on days 7 and 14 was observed in injured spinal cords. Immunostaining on day 7 revealed co-localization of OASIS and astrocytes in the periphery of the injury site. Furthermore, anti-OASIS small interfering RNA (siRNA) was injected at the injury sites on day 5 to elucidate the function of OASIS. Treatment with anti-OASIS siRNA caused a significant decrease in OASIS mRNA on day 7 and protein on days 7 and 14, and was associated with the inhibition of astrogliosis and hindlimb motor function recovery. Results of our study show that OASIS expression synchronizes with astrogliosis and is functionally associated with astrogliosis after spinal cord injury.展开更多
The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to pre...The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.展开更多
A spectrum-splitting and beam-concentrating (SSBC) diffractive optical element (DOE) for three-junction pho- tovoltaics (PV) system is designed and fabricated by five-circ/e micro-fabrication. The incident solar...A spectrum-splitting and beam-concentrating (SSBC) diffractive optical element (DOE) for three-junction pho- tovoltaics (PV) system is designed and fabricated by five-circ/e micro-fabrication. The incident solar light is efficiently split into three sub-spectrum ranges and strongly concentrated on the focal plane, which can be di- rectly utilized by suitable spectrum-matching solar cells. The system concentration factor reaches 12x. Moreover, the designed wavelengths (450nm, 550nm and 65Onto) are spatially distributed on the focal plane, in good agree- ment with the theoretical results. The average optical effic/ency of all the cells over the three designed wavelengths is 60.07%. The SSBC DOE with a high concentration factor and a high optical efficiency provides a cost-effective approach to achieve higher PV conversion efficieneies.展开更多
Drought is a major environmental factor limiting cotton (Gossypium hirsutum L.) productivity worldwide and projected climate changes could increase their negative effects in the future. Thus, targeting the molecular m...Drought is a major environmental factor limiting cotton (Gossypium hirsutum L.) productivity worldwide and projected climate changes could increase their negative effects in the future. Thus, targeting the molecular mechanisms correlated with drought tolerance without reducing productivity is a challenge for plant breeding. In this way, we evaluated the effects of water deficit progress on AtDREB2A-CA transgenic cotton plant responses, driven by the stress-inducible rd29 promoter. Besides shoot and root morphometric traits, gas exchange and osmotic adjustment analyses were also included. Here, we present how altered root traits shown by transgenic plants impacted on physiological acclimation responses when submitted to severe water stress. The integration of AtDREB2A-CA into the cotton genome increased total root volume, surface area and total root length, without negatively affecting shoot morphometric growth parameters and nor phenotypic evaluated traits. Additionally, when compared to wild-type plants, transgenic plants (17-T0 plants and its progeny) highlighted a gradual pattern of phenotypic plasticity tosome photosynthetic parameters such as photosynthetic rate and stomatal conductance with water deficit progress. Transgene also promoted greater shoot development and root robustness (greater and deeper root mass) allowing roots to grow into deeper soil layers. The same morpho-physiological trend was observed in the subsequent generation (17.6-T2). Our results suggest that the altered root traits shown by transgenic plants are the major contributors to higher tolerance response, allowing the AtDRE2A-CA-cotton plants to maintain elevated stomatal conductance and assimilate rates and, consequently, reducing their metabolic costs involved in the antioxidant responses activation. These results also suggest that these morpho-physiological changes increased the number of reproductive structures retained per plant (26% higher) when compared with its non-transgenic counterpart. This is the first report of cotton plants overexpressing the AtDRE2A-CA transcription factor, demonstrating a morpho-physiological and yield advantages under drought stress, without displaying any yield penalty under irrigated conditions. The mechanisms by which the root traits influenced the acclimation of the transgenic plants to severe water deficit conditions are also discussed. These data present an opportunity to use this strategy in cotton breeding programs in order to improve drought adaptation toward better rooting features.展开更多
Two homologous genes of the Arabidopsis C-repeat/dehydration-responsive element binding factors (CBF/ DREB1) transcriptional activator were isolated by RT-PCR from Chinese cabbage (Brassica pekinensis Rupr. cv. Qin...Two homologous genes of the Arabidopsis C-repeat/dehydration-responsive element binding factors (CBF/ DREB1) transcriptional activator were isolated by RT-PCR from Chinese cabbage (Brassica pekinensis Rupr. cv. Qinbai 5) and were designated as BcCBF1 and BcCBF2. Each encodes a putative CBF/DREB1 protein with an AP2 (Apetal2) DNA-bindlng domain, a putative nuclear localization signal, and a possible acidic activation domain. Deduced amino acid sequences show that BcCBF1 is very similar to the Arabidopsis CBF1, whereas BcCBF2 Is different in that it contains two extra regions of 24 and 20 amino acids in the acidic domain. The mRNA accumulation profiles indicated that the expression of BcCBF1 and BcCBF2 is strongly induced by cold treatment, but does not respond similarly to dehydration or abscisic acid (ABA) treatment. However, the cold-induced accumulation of BcCBF2 mRNA was rapid but short-lived compared with that of BcCBFI. The mRNA levels of both BcCBF1 and BcCBF2 were higher in leaves than in roots when plants were exposed to cold, whereas, salt stress caused higher accumulation of BcCBF2 mRNA in roots than in leaves, suggesting that the organ specificity of the gene expression of the BcCBFs is probably stress dependent. In addition, the accumulation of BcCBF1 and BcCBF2 mRNAs was greatly enhanced by light compared with darkness when seedlings were exposed to cold. It is concluded that the two BcCBF proteins may be involved in the process of plant response to cold stress through an ABA-independent pathway and that there is also a cross-talk between the light signaling conduction pathway and the cold response pathway in B. pekinensis as in Arabidopsis.展开更多
Short-chain fatty acids are important nutrients that regulate milk fat synthesis.They regulate milk syn-thesis via the sterol regulatory element binding protein 1(SREBP1)pathway;however,the details are still unknown.H...Short-chain fatty acids are important nutrients that regulate milk fat synthesis.They regulate milk syn-thesis via the sterol regulatory element binding protein 1(SREBP1)pathway;however,the details are still unknown.Here,the regulation and mechanism of sodium acetate(SA)in milk fat synthesis in bovine mammary epithelial cells(BMECs)were assessed.BMECs were treated with SA supplementation(SAþ)or without SA supplementation(SA-),and milk fat synthesis and activation of the SREBP1 pathway were increased(P=0.0045;P=0.0042)by SAþand decreased(P=0.0068;P=0.0031)by SA-,respectively.Overexpression or inhibition of SREBP1 demonstrated that SA promoted milk fat synthesis(P=0.0045)via the SREBP1 pathway.Overexpression or inhibition of TATA element modulatory factor 1(TMF1)demon-strated that TMF1 suppressed activation of the SREBP1 pathway(P=0.0001)and milk fat synthesis(P=0.0022)activated by SAþ.Overexpression or inhibition of TMF1 and SREBP1 showed that TMF1 suppressed milk fat synthesis(P=0.0073)through the SREBP1 pathway.Coimmunoprecipitation analysis revealed that TMF1 interacted with SREBP1 in the cytoplasm and suppressed the nuclear localization of SREBP1(P=0.0066).The absence or presence of SA demonstrated that SA inhibited the expression of TMF1(P=0.0002)and the interaction between TMF1 and SREBP1(P=0.0001).Collectively,our research sug-gested that TMF1 was a new negative regulator of milk fat synthesis.In BMECs,SA promoted the SREBP1 pathway and milk fat synthesis by suppressing TMF1.This study enhances the current understanding of the regulation of milk fat synthesis and provides new scientific data for the regulation of milk fat synthesis.展开更多
PM2.5 and total suspended particulate (TSP) samples were collected at Lijiang, southeastern Tibetan Plateau, China. Sixteen elements (Al, Si, S, K, Ca, Cr, Mn, Ti, Fe, Ni, Zn, As, Br, Sb, Pb and Cu) were analyzed ...PM2.5 and total suspended particulate (TSP) samples were collected at Lijiang, southeastern Tibetan Plateau, China. Sixteen elements (Al, Si, S, K, Ca, Cr, Mn, Ti, Fe, Ni, Zn, As, Br, Sb, Pb and Cu) were analyzed to investigate their elemental compositions during the pre-monsoon period. The results showed that Ca was the most abundant element in both PM2.5 and TSP samples. The enrichment factors (EFs) ofSi, Ti, Ca, Fe, K and Mn were all below 10 for both PM2.5 and TSP, and these elements also had lower PM2.5/TSP ratios (0.32-0.34), suggesting that they were mainly derived from crustal sources. Elements Cu, Zn, S, Br and Sb showed strong enrichment in PM2.5 and TSP samples, with their PM2.5/TSP ratios ranging from 0.66 to 0.97, indicating that they were enriched in the fine fractions and influenced by anthropogenic sources. Analysis of the wind field at 500 hPa and calculations of back trajectories indicated that Al, Si, Ca, Ti, Cr, Mn and Fe can be influenced by transport from northwestern China during the dust-storm season, and that S, K, Ni, Br and Pb reached high concentrations during westerly transport from south Asia. Combined with the principle component analysis and correlation analysis, elements of PM2.5 samples were mainly from crustal sources, biomass burning emissions and regional traffic-related sources.展开更多
基金Supported by a Sub-project "Ecological Geochemical Survey of Oil Crop (sunflower) Producing Area in Western Jilin" of the Project of China Geological Survey and Jilin Provincial Government " Agricul-tural Geological Survey of Jilin Province"~~
文摘Based on the assay of the total content and available content of the trace nutrient elements and the soil pH and organic matter of the soil samples,the characteristic of the available content of the trace nutrient elements and their affecting factors are studied. The results show that the available B in western Jilin is in a middle level,the content in Nong'an is higher than that in the others; the available Mn is extremely abundant; the available Cu in Nong'an is obviously higher than other areas,and the content in Da'an differs greatly; the available Zn is in a middle level; the severe shortage of available Mo differs between different areas; and the available Fe is extremely abundant. The available Mn,Cu and Fe have significantly positive correlation with their total content; the available B has significantly positive correlation with pH,and Zn has obviously negative correlation with pH; the available Mn and Fe had significantly positive correlation with soil organic matter.
文摘The present paper is addressed to the finite element method combined with dynamic photoelastic analysis of propagating cracks, that is, on the basis of [1] by Chien Wei-zang, finite elements which incorporate the propagating crack-tip singularity intrinsic to two-dimensional elasticity are employed. THe relation between crack opening length and time step obtained from dynamic photoelaslie analysis is used as a definite condition for solving the dynamic equations and simulating the crack propagations as well As an example, the impact response of dynamie-bending-test specimen is investigated and the dynamic stress-intensity factor obtained from the mentioned finite element analysis and dynamic photoelasticity is in reasonable agreement with each other.
文摘Aim To present a quantitative method for structural complexity analysis and evaluation of information systems. Methods Based on Petri net modeling and analysis techniques and with the aid of mathematical tools in general net theory(GNT), a quantitative method for structure description and analysis of information systems was introduced. Results The structural complexity index and two related factors, i.e. element complexity factor and connection complexity factor were defined, and the relations between them and the parameters of the Petri net based model of the system were derived. Application example was presented. Conclusion The proposed method provides a theoretical basis for quantitative analysis and evaluation of the structural complexity and can be applied in the general planning and design processes of the information systems.
基金The National Natural Science Foundation of China under contract No.U1606401the National Program on Global Change and Air-Sea Interaction of China under contract Nos GASI-02-IND-CJ02,GASI-GEOGE-03 and GASI-GEOGE-06-03
文摘The major and trace elements in 110 surface sediment samples collected from the middle of the Bay of Bengal(mid-Bay of Bengal) are analyzed to investigate provenance. Si levels are highest, followed by Al, and the distributions of these two elements are identical. The average CIA*(chemical index of alteration) value is 72.07,indicating that the degree of weathering of the sediments in the study area is intermediate between those of sediments of the Himalayan and Indian rivers. Factor analyses and discrimination function analyses imply that the two main provenances are the Himalayan and the Indian continent. The inverse model calculation of the Tinormalized element ratios of the Bay of Bengal sediments indicate an estimated average contribution of 83.5%and 16.5% from the Himalayan and peninsular Indian rivers to the study area, respectively. The Himalayan source contributes more sediment to the eastern part of the study area, whereas the western part receives more sediment from the Indian Peninsula than did the eastern part. The primary mechanisms for deposition of sediments in the study area are the transport of Himalayan matter by turbidity currents and river-diluted water and the transport of Indian matter to the study area by a surface circulation in the Bay of Bengal, particularly the East India Coastal Current.
基金The project supported by the National Natural Science Foundation of China (50579081)the Australian Research Council (DP0452681)The English text was polished by Keren Wang
文摘The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.
基金Project supported by the National Natural Science Foundation of China (No.10176003).
文摘In this paper a semi-elliptic surface crack problem in an elastic solid of finite size under impact loading is investigated. An analysis is performed by means of fracture dynamics and the finite element method, and a three-dimensional finite element program is developed to compute the dynamic stress intensity factor. The results reveal that the effects of the solid's boundary surface, crack surface, material inertia and stress wave interactions play significant roles in dynamic fracture.
基金supported by MEXT/JSPS KAKENHI Grant-in-Aid for Scientific Research(C)to NK(Grant No.17K10931)
文摘Old astrocyte specifically induced substance (OASIS) is an endoplasmic reticulum (ER) stress transducer specifically expressed in astrocytes and osteoblasts. OASIS regulates the differentiation of neural precursor cells into astrocytes in the central nervous system. This study aimed to elucidate the involvement of ER stress responses stimulated via OASIS in astrogliosis following spinal cord injury. In a mouse model of spinal cord contusion injury, OASIS mRNA and protein expression were evaluated at days 7 and 14. A significant increase in OASIS mRNA on day 7 and an increase in protein on days 7 and 14 was observed in injured spinal cords. Immunostaining on day 7 revealed co-localization of OASIS and astrocytes in the periphery of the injury site. Furthermore, anti-OASIS small interfering RNA (siRNA) was injected at the injury sites on day 5 to elucidate the function of OASIS. Treatment with anti-OASIS siRNA caused a significant decrease in OASIS mRNA on day 7 and protein on days 7 and 14, and was associated with the inhibition of astrogliosis and hindlimb motor function recovery. Results of our study show that OASIS expression synchronizes with astrogliosis and is functionally associated with astrogliosis after spinal cord injury.
基金Supported by the Key Program of National Natural Science Foundation of China(No.51138001)the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51121005)+2 种基金the Fundamental Research Funds for the Central Universities(DUT13LK16)the Young Scientists Fund of National Natural Science Foundation of China(No.51109134)China Postdoctoral Science Foundation(No.2011M500814)
文摘The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.
基金Supported by the National Natural Science Foundation of China under Grant Nos 91233202,91433205 and 51421002the Chinese Academy of Sciences
文摘A spectrum-splitting and beam-concentrating (SSBC) diffractive optical element (DOE) for three-junction pho- tovoltaics (PV) system is designed and fabricated by five-circ/e micro-fabrication. The incident solar light is efficiently split into three sub-spectrum ranges and strongly concentrated on the focal plane, which can be di- rectly utilized by suitable spectrum-matching solar cells. The system concentration factor reaches 12x. Moreover, the designed wavelengths (450nm, 550nm and 65Onto) are spatially distributed on the focal plane, in good agree- ment with the theoretical results. The average optical effic/ency of all the cells over the three designed wavelengths is 60.07%. The SSBC DOE with a high concentration factor and a high optical efficiency provides a cost-effective approach to achieve higher PV conversion efficieneies.
基金supported by grants of funds from the Brazilian government(EMBRAPA,CNPq,CAPES and FAPDF).
文摘Drought is a major environmental factor limiting cotton (Gossypium hirsutum L.) productivity worldwide and projected climate changes could increase their negative effects in the future. Thus, targeting the molecular mechanisms correlated with drought tolerance without reducing productivity is a challenge for plant breeding. In this way, we evaluated the effects of water deficit progress on AtDREB2A-CA transgenic cotton plant responses, driven by the stress-inducible rd29 promoter. Besides shoot and root morphometric traits, gas exchange and osmotic adjustment analyses were also included. Here, we present how altered root traits shown by transgenic plants impacted on physiological acclimation responses when submitted to severe water stress. The integration of AtDREB2A-CA into the cotton genome increased total root volume, surface area and total root length, without negatively affecting shoot morphometric growth parameters and nor phenotypic evaluated traits. Additionally, when compared to wild-type plants, transgenic plants (17-T0 plants and its progeny) highlighted a gradual pattern of phenotypic plasticity tosome photosynthetic parameters such as photosynthetic rate and stomatal conductance with water deficit progress. Transgene also promoted greater shoot development and root robustness (greater and deeper root mass) allowing roots to grow into deeper soil layers. The same morpho-physiological trend was observed in the subsequent generation (17.6-T2). Our results suggest that the altered root traits shown by transgenic plants are the major contributors to higher tolerance response, allowing the AtDRE2A-CA-cotton plants to maintain elevated stomatal conductance and assimilate rates and, consequently, reducing their metabolic costs involved in the antioxidant responses activation. These results also suggest that these morpho-physiological changes increased the number of reproductive structures retained per plant (26% higher) when compared with its non-transgenic counterpart. This is the first report of cotton plants overexpressing the AtDRE2A-CA transcription factor, demonstrating a morpho-physiological and yield advantages under drought stress, without displaying any yield penalty under irrigated conditions. The mechanisms by which the root traits influenced the acclimation of the transgenic plants to severe water deficit conditions are also discussed. These data present an opportunity to use this strategy in cotton breeding programs in order to improve drought adaptation toward better rooting features.
基金Supported by the National Natural Science Foundation of China (30470277), Gansu Key Technologies R & D Program (GS022-A41-045), Gansu Provincial Natural Science Foundation of China (ZS031-A25-039-D) and Gansu Agricultural Bio-technology R & D Project.
文摘Two homologous genes of the Arabidopsis C-repeat/dehydration-responsive element binding factors (CBF/ DREB1) transcriptional activator were isolated by RT-PCR from Chinese cabbage (Brassica pekinensis Rupr. cv. Qinbai 5) and were designated as BcCBF1 and BcCBF2. Each encodes a putative CBF/DREB1 protein with an AP2 (Apetal2) DNA-bindlng domain, a putative nuclear localization signal, and a possible acidic activation domain. Deduced amino acid sequences show that BcCBF1 is very similar to the Arabidopsis CBF1, whereas BcCBF2 Is different in that it contains two extra regions of 24 and 20 amino acids in the acidic domain. The mRNA accumulation profiles indicated that the expression of BcCBF1 and BcCBF2 is strongly induced by cold treatment, but does not respond similarly to dehydration or abscisic acid (ABA) treatment. However, the cold-induced accumulation of BcCBF2 mRNA was rapid but short-lived compared with that of BcCBFI. The mRNA levels of both BcCBF1 and BcCBF2 were higher in leaves than in roots when plants were exposed to cold, whereas, salt stress caused higher accumulation of BcCBF2 mRNA in roots than in leaves, suggesting that the organ specificity of the gene expression of the BcCBFs is probably stress dependent. In addition, the accumulation of BcCBF1 and BcCBF2 mRNAs was greatly enhanced by light compared with darkness when seedlings were exposed to cold. It is concluded that the two BcCBF proteins may be involved in the process of plant response to cold stress through an ABA-independent pathway and that there is also a cross-talk between the light signaling conduction pathway and the cold response pathway in B. pekinensis as in Arabidopsis.
基金supported by China Postdoctoral Science Foundation funded project(2019M662971)The Basic Scientific Research Operating Expenses of Higher Education Institutions of Heilongjiang Province(No.2020-KYYWF-0283).
文摘Short-chain fatty acids are important nutrients that regulate milk fat synthesis.They regulate milk syn-thesis via the sterol regulatory element binding protein 1(SREBP1)pathway;however,the details are still unknown.Here,the regulation and mechanism of sodium acetate(SA)in milk fat synthesis in bovine mammary epithelial cells(BMECs)were assessed.BMECs were treated with SA supplementation(SAþ)or without SA supplementation(SA-),and milk fat synthesis and activation of the SREBP1 pathway were increased(P=0.0045;P=0.0042)by SAþand decreased(P=0.0068;P=0.0031)by SA-,respectively.Overexpression or inhibition of SREBP1 demonstrated that SA promoted milk fat synthesis(P=0.0045)via the SREBP1 pathway.Overexpression or inhibition of TATA element modulatory factor 1(TMF1)demon-strated that TMF1 suppressed activation of the SREBP1 pathway(P=0.0001)and milk fat synthesis(P=0.0022)activated by SAþ.Overexpression or inhibition of TMF1 and SREBP1 showed that TMF1 suppressed milk fat synthesis(P=0.0073)through the SREBP1 pathway.Coimmunoprecipitation analysis revealed that TMF1 interacted with SREBP1 in the cytoplasm and suppressed the nuclear localization of SREBP1(P=0.0066).The absence or presence of SA demonstrated that SA inhibited the expression of TMF1(P=0.0002)and the interaction between TMF1 and SREBP1(P=0.0001).Collectively,our research sug-gested that TMF1 was a new negative regulator of milk fat synthesis.In BMECs,SA promoted the SREBP1 pathway and milk fat synthesis by suppressing TMF1.This study enhances the current understanding of the regulation of milk fat synthesis and provides new scientific data for the regulation of milk fat synthesis.
基金supported by the Natural Science Foundation of China(NSFC40925009 and 40801028)projects from the Chinese Academy of Sciences(Nos.0929011018,KZCX2-YW-BR-10 and KZCX2-YW-148)the Ministry of Science & Technology (2009IM030100)
文摘PM2.5 and total suspended particulate (TSP) samples were collected at Lijiang, southeastern Tibetan Plateau, China. Sixteen elements (Al, Si, S, K, Ca, Cr, Mn, Ti, Fe, Ni, Zn, As, Br, Sb, Pb and Cu) were analyzed to investigate their elemental compositions during the pre-monsoon period. The results showed that Ca was the most abundant element in both PM2.5 and TSP samples. The enrichment factors (EFs) ofSi, Ti, Ca, Fe, K and Mn were all below 10 for both PM2.5 and TSP, and these elements also had lower PM2.5/TSP ratios (0.32-0.34), suggesting that they were mainly derived from crustal sources. Elements Cu, Zn, S, Br and Sb showed strong enrichment in PM2.5 and TSP samples, with their PM2.5/TSP ratios ranging from 0.66 to 0.97, indicating that they were enriched in the fine fractions and influenced by anthropogenic sources. Analysis of the wind field at 500 hPa and calculations of back trajectories indicated that Al, Si, Ca, Ti, Cr, Mn and Fe can be influenced by transport from northwestern China during the dust-storm season, and that S, K, Ni, Br and Pb reached high concentrations during westerly transport from south Asia. Combined with the principle component analysis and correlation analysis, elements of PM2.5 samples were mainly from crustal sources, biomass burning emissions and regional traffic-related sources.