Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical re...Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical region.Understanding plant diversity patterns with increasing elevation is of high significance,not least for conservation planning.We studied the pattern of species richness,Shannon diversity,endemic richness,endemics ratio,and richness of life forms along a 3900 m elevational transect in Mount Palvar,overlooking the Lut Desert in Southeast Iran.We also analyzed the effect of environmental variables on species turnover along the vertical gradient.A total of 120 vegetation plots(10 m×10 m)were sampled along the elevational transect containing species and environmental data.To discover plant diversity pattern along the elevational gradient,generalized additive model(GAM)was used.Non-metric multidimensional scaling(NMDS)was applied for illustrating the correlation between species composition and environmental variables.We found hump-shaped pattern for species richness,Shannon diversity,endemic richness,and species richness of different life forms,but a monotonic increasing pattern for ratio of endemic species from low to high elevations.Our study confirms the humped pattern of species richness peaking at intermediate elevations along a complete elevational gradient in a semi-arid mountain.The monotonic increase of endemics ratio with elevation in our area as a case study is consistent with global increase of endemism with elevation.According to our results,temperature and precipitation are two important climatic variables that drive elevational plant diversity,particularly in seasonally dry areas.Our study suggests that effective conservation and management are needed for this low latitude mountain area along with calling for long-term monitoring for species redistribution.展开更多
Reproductive strategies of sexually dimorphic plants vary in response to the environment.Here,we ask whether the sexual systems of Fagopyrum species(i.e.,selfing homostylous and out-crossing distylous)represent distin...Reproductive strategies of sexually dimorphic plants vary in response to the environment.Here,we ask whether the sexual systems of Fagopyrum species(i.e.,selfing homostylous and out-crossing distylous)represent distinct adaptive strategies to increase reproductive success in changing alpine environments.To answer this question,we determined how spatial and temporal factors(e.g.,elevation and peak flowering time)affect reproductive success(i.e.,stigmatic pollen load)in nine wild Fagopyrum species(seven distylous and two homostylous)among 28 populations along an elevation gradient of 1299-3315 m in the Hengduan Mountains,southwestern China.We also observed pollinators and conducted hundreds of hand pollinations to investigate inter/intra-morph compatibility,self-compatibility and pollen limitation in four Fagopyrum species(two distylous and two homostylous).We found that Fagopyrum species at higher elevation generally had bigger flowers and more stigmatic pollen loads;lateflowering individuals had smaller flowers and lower pollen deposition.Stigmatic pollen deposition was more variable in distylous species than in homostylous species.Although seed set was not pollenlimited in all species,we found that fruit set was much lower in distylous species,which rely on frequent pollinator visits,than in homostylous species capable of autonomous self-pollination.Our findings that pollination success increases at high elevations and decreases during the flowering season suggest that distylous and homostylous species have spatially and temporally distinct reproductive strategies related to environment-dependent pollinator activity.展开更多
Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradient...Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity.展开更多
Frontotemporal lobar degeneration(FTLD)is a form of progressive dementia characterized by degeneration of the frontal and temporal lobes of the brain.This pathology involves a series of cognitive,behavioral,and neurol...Frontotemporal lobar degeneration(FTLD)is a form of progressive dementia characterized by degeneration of the frontal and temporal lobes of the brain.This pathology involves a series of cognitive,behavioral,and neurological symptoms that influence personality,decision-making ability,and language.展开更多
BACKGROUND The incidence of acute myocardial infarction(AMI)is rising,with cardiac rupture accounting for approximately 2%of deaths in patients with acute ST-segment elevation myocardial infarction(STEMI).Ventricular ...BACKGROUND The incidence of acute myocardial infarction(AMI)is rising,with cardiac rupture accounting for approximately 2%of deaths in patients with acute ST-segment elevation myocardial infarction(STEMI).Ventricular free wall rupture(FWR)occurs in approximately 2%of AMI patients and is notably rare in patients with non-STEMI.Types of cardiac rupture include left ventricular FWR,ventricular septal rupture,and papillary muscle rupture.The FWR usually leads to acute cardiac tamponade or electromechanical dissociation,where standard resuscitation efforts may not be effective.Ventricular septal rupture and papillary muscle rupture often result in refractory heart failure,with mortality rates over 50%,even with surgical or percutaneous repair options.CASE SUMMARY We present a rare case of an acute non-STEMI patient who suffered sudden FWR causing cardiac tamponade and loss of consciousness immediate before undergoing coronary angiography.Prompt resuscitation and emergency open-heart repair along with coronary artery bypass grafting resulted in successful patient recovery.CONCLUSION This case emphasizes the risks of AMI complications,shares a successful treatment scenario,and discusses measures to prevent such complications.展开更多
The aim of this research is to investigate the patterns of vascular plant species richness,diversity,and distribution along an elevation gradient in the Abune Yosef mountain range,Ethiopia.Preferential systematic samp...The aim of this research is to investigate the patterns of vascular plant species richness,diversity,and distribution along an elevation gradient in the Abune Yosef mountain range,Ethiopia.Preferential systematic sampling was employed to collect vegetation and environmental data along the elevation gradient.We found that plant species richness declines monotonically from low to high elevations.Specifically,vascular plant species richness and diversity were lower in the Afroalpine grassland(high elevation)than in the Dry evergreen Afromontane forest and Ericaceous forest(low elevations).In contrast,endemic vascular plant richness was significantly higher in the Afroalpine grassland than in the Dry evergreen Afromontane forest and Ericaceous forest.Elevation showed a significant impact on the richness,diversity,and endemism of vascular plants.According to Sorensen's coefficient,the similarity between Dry evergreen Afromontane forest and Ericaceous forest vegetation types is higher(32%)than the similarity between Ericaceous forest and Afroalpine grassland(18%).Only 5%similarity was recorded between the Dry evergreen Afromontane forest and Afroalpine grassland.Growth forms showed different elevationai richness patterns.Trees and liana increased monotonically up to 3300 m.Shrub and herb richness patterns followed a hump-shaped and inverted hump-shaped pattern along the elevation gradient.The elevation patterns of vascular plant species richness,diversity,and growth form in the present study may be attributed to differences in management intensity,spatial heterogeneity,microclimatic variations,and anthropogenic disturbances.展开更多
Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes.Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter deco...Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes.Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter decomposition in those ecosystems. Here, we conducted a2-year-long litter decomposition experiment along an elevational gradient from 3000 to 3600 m to determine the potential effects of litter quality, climate warming and freeze-thaw on the mass losses of three litter types [dragon spruce(Picea asperata Mast.), red birch(Betula albosinensis Burk.), and minjiang fir(Abies faxoniana Rehd. et Wild)]. Marked differences in mass loss were observed among the litter types and sampling dates. Decay constant(k) values of red birch were significantly higher than those of the needle litters. However, mass losses between elevations did not differ significantly for any litter type.During the winter, lost mass contributed 18.3-28.8 % of the net loss rates of the first year. Statistical analysis showed that the relationships between mass loss and litter chemistry or their ratios varied with decomposition periods. Our results indicated that short-term field incubations could overestimate the k value of litter decomposition.Considerable mass was lost from subalpine forest litters during the wintertime. Potential future warming may not affect the litter decomposition in the subalpine forest ecosystems of eastern Tibetan Plateau.展开更多
Mountainous ecosystems are considered highly sensitive and vulnerable to natural disasters and cli- rnatic changes. Therefore, quantifying the effects of elevation on grassland productivity to understand ecosys- tem-c...Mountainous ecosystems are considered highly sensitive and vulnerable to natural disasters and cli- rnatic changes. Therefore, quantifying the effects of elevation on grassland productivity to understand ecosys- tem-climate interactions is vital for mountainous ecosystems. Water-use efficiency (WUE) provides a useful index for understanding the metabolism of terrestrial ecosystems as well as for evaluating the degradation of grasslands. This paper explored net primary productivity (NPP) and WUE in grasslands along an elevational gradient ranging from 400 to 3,400 m asl in the northern Tianshan Mountains-southern Junggar Basin (TMJB), Xinjiang of China, using the Biome-BGC model. The results showed that: 1 ) the NPP increased by 0.05 g C/(m2-a) with every increase of 1-m elevation, reached the maximum at the mid-high elevation (1,600 m asl), and then decreased by 0.06 g C/(m2.a) per 1-m increase in elevation; 2) the grassland NPP was positively correlated with temperature in alpine meadow (AM, 2,700-3,500 m asl), mid-mountain forest meadow (MMFM, 1,650-2,700 m asl) and low-mountain dry grassland (LMDG, 650-1,650 m asl), while positive correlations were found between NPP and annual precipitation in plain desert grassland (PDG, lower than 650 m asl); 3) an increase (from 0.08 to 1.09 g C/(m2.a)) in mean NPP for the grassland in TMJB under a real climate change scenario was observed from 1959 to 2009; and 4) remarkable differences in WUE were found among different elevations, in general, WUE increased with decreasing elevation, because water availability is lower at lower elevations; however, at elevations lower than 540 m asl, we did observe a decreasing trend of WUE with decreasing elevation, which may be due to the sharp changes in canopy cover over this gradient. Our research suggests that the NPP simulated by Biome-BGC is consistent with field data, and the modeling provides an opportunity to further evaluate interactions between environmental factors and ecosystem productivity.展开更多
Faunal species richness is traditionally assumed to decrease with increasing elevation and decreasing prmary productivity. Species richness is reported to peak at mid-elevation. This survey examines the herpetofaunal ...Faunal species richness is traditionally assumed to decrease with increasing elevation and decreasing prmary productivity. Species richness is reported to peak at mid-elevation. This survey examines the herpetofaunal diversity and distribution in Mt. Kenya (central Kenya) by testing the hypothesis that changes in species richness with elevation relate to elevation-dependent changes in climate. Sampling along transects from an elevation of approximately 1 700 m in Chogoda forest block (wind-ward side) and approximately 2 600 m in Sirimon block (rain shadow zone) upwards in March 2009. This starts from the forest to montane alpine zones. Sampling of reptiles and amphibians uses pitfall traps associated with ddfl fences, time-limited searches and visual encounter surveys. The results show that herpetofaunal richness differs among three vegetation zones along the elevation gradient. Chogoria has higher biodiversity than Sirimon. More species occur at low and middle elevations and few exist at high elevations. The trends are consistent with expected optimum water and energy variables. The lower alpine montane zone has high species richness but low diversity due to domi- nance of some high elevations species. Unambiguous data do not support a mid-domain effect (mid-elevation peak) because the observed trend better fits a model in which climatic variables (rainfall and temperature) control species richness, which indirectly measures productivity. It is important to continue protection of all indigenous forests, especially at low to mid elevations. These areas are vulnerable to human destruction yet are home to some endemic species. Firebreaks can limit the spread of the perennial wildfires, especially on the moor- lands.展开更多
Background:In biological systems,biological diversity often displays a rapid turn-over across elevations.This defining feature has made mountains classic systems for studying the spatial variation in diversity.Because...Background:In biological systems,biological diversity often displays a rapid turn-over across elevations.This defining feature has made mountains classic systems for studying the spatial variation in diversity.Because patterns of elevational diversity can vary among lineages and mountain systems it remains difficult to extrapolate findings from one montane region to another,or among lineages.In this study,we assessed patterns and drivers of avian diversity along an elevational gradient on the eastern slope of Mt.Gongga,the highest peak in the Hengduan Mountain Range in central China,and a mountain where comprehensive studies of avian diversity are still lacking.Methods:We surveyed bird species in eight 400-m elevational bands from 1200 to 4400 m a.s.l.between 2012 and 2017.To test the relationship between bird species richness and environmental factors,we examined the relative importance of seven ecological variables on breeding season distribution patterns:land area(LA),mean daily temperature(MDT),seasonal temperature range(STR),the mid-domain effect(MDE),seasonal precipitation(SP),invertebrate biomass(IB) and enhanced vegetation index(EVI).Climate data were obtained from five local meteorological stations and three temperature/relative humidity smart sensors in 2016.Results:A total of 219 bird species were recorded in the field,of which 204 were recorded during the breeding season(April–August).Species richness curves(calculated separately for total species,large-ranged species,and smallranged species) were all hump-shaped.Large-ranged species contributed more to the total species richness pattern than small-ranged species.EVI and IB were positively correlated with total species richness and small-ranged species richness.LA and MDT were positively correlated with small-ranged species richness,while STR and SP were negatively correlated with small-ranged species richness.MDE was positively correlated with large-ranged species richness.When we considered the combination of candidate factors using multiple regression models and model-averaging,total species richness and large-ranged species richness were correlated with STR(negative) and MDE(positive),while small-ranged species richness was correlated with STR(negative) and IB(positive).Conclusions:Although no single key factor or suite of factors could explain patterns of diversity,we found that MDE,IB and STR play important but varying roles in shaping the elevational richness patterns of different bird species categories.Model-averaging indicates that small-ranged species appear to be mostly influenced by IB,as opposed to large-ranged species,which exhibit patterns more consistent with the MDE model.Our data also indicate that the species richness varied between seasons,offering a promising direction for future work.展开更多
The forest litter is an essential reservoir of nutrients in forests, supplying a large part of absorbable base cations(BC) to topsoil, and facilitating plant growth within litter-soil system. To characterize elevation...The forest litter is an essential reservoir of nutrients in forests, supplying a large part of absorbable base cations(BC) to topsoil, and facilitating plant growth within litter-soil system. To characterize elevational patterns of base cation concentrations in the forest litter and topsoil, and explore the effects of climate and tree species, we measured microclimate and collected the forest litter and topsoil(0-10 cm) samples across an elevational range of more than 2000 m(1243 ~ 3316 m a.s.l.),and analyzed the concentrations of BC in laboratory. Results showed that: 1) litter Ca concentration displayed a hump-shaped pattern along the elevational gradients, but litter K and Mg showed saddle-shaped patterns. Soil Ca concentration increased with elevation, while soil K and Mg had no significant changes. 2) Ca concentration in the forest litter under aspen(Populus davidiana) was significantly higher than that in all other species, but in topsoil, Ca concentration was higher under coniferous larch and fir(Larix chinensis and Abies fargesii). Litter K and Mg concentrations was higher under coniferous larch and fir, whereas there were nosignificant differences among tree species in the concentrations of K and Mg in topsoil. 3) Climatic factors including mean annual temperature(MAT), growing season precipitation(GSP) and non-growing season precipitation(NGSP) determined BC concentrations in the forest litter and topsoil. Soil C/N and C/P also influenced BC cycling between litter and soil. Observation along elevations within different tree species implies that above-ground tree species can redistribute below-ground cations, and this process is profoundly impacted by climate. Litter and soil Ca, K and Mg with different responses to environmental variables depend on their soluble capacity and mobile ability.展开更多
Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients i...Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients in different climatic zones is still unknown. This paper investigates seed density,species composition and nonconstituent species of forest soil seed banks in Yunnan Province, southwest China. Similarity between the soil seed bank and standing vegetation was also examined. We collected soil samples from sites spanning 12 elevations in tropical rain forests, subtropical evergreen broadleaved forests and subalpine coniferous forests, and transported them to a glasshouse for germination trials for species identification. The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests. Seeds of woody species dominated the soil seed banks of tropical and subtropical forests, while herbs dominated those of subalpine forests.The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests, followed by subtropical forests but were completely absent from subalpine forests.展开更多
Recently, a phylogenetic diversity and community structure analysis as complementary to species-centric approaches in biodiversity studies provides new insights into the processes of community assembly. In this study,...Recently, a phylogenetic diversity and community structure analysis as complementary to species-centric approaches in biodiversity studies provides new insights into the processes of community assembly. In this study, we analyzed species and phylogenetic diversity and community structures for woody and herbaceous plants along two elevational transects on Mt. Baekhwa, South Korea. The species richness and phylogenetic diversity of woody plants showed monotonic declining patterns with increasing elevation along all transects, whereas herbaceous plants showed different patterns, such as no relationship and a reversed unimodal pattern, between the study transects. The main drivers of these patterns were climate and habitat variables for woody and herbaceous plants, respectively. In addition, the phylogenetic community structure primarily showed phylogenetic clustering regulated by deterministic processes, especially environmental filtering, such as climate or habitat factors, along the two transects, although herbaceous plants along a transect depicted phylogenetic randomness as a result of a neutral process. Our findings suggest that deterministic and neutral processes may simultaneously control the community structures along small-scale elevational gradients such as local transects, although the deterministic process may be the predominant type.展开更多
The estimation of carbon density of high altitude forests was carried out at five different sites along an elevational gradient from 1550 m to 3550 m in a part of Kedarnath Wildlife Sanctuary, which is one of the larg...The estimation of carbon density of high altitude forests was carried out at five different sites along an elevational gradient from 1550 m to 3550 m in a part of Kedarnath Wildlife Sanctuary, which is one of the largest protected areas of the Garhwal Himalaya, India. Among the study sites the above ground biomass density (AGBD) ranged from 202.72 Mg·ha^-1 (Site 5) to 718.75 Mg·ha^-1 (Site 1) and below ground biomass density (BGBD) from 61.00 Mg·ha^-1 (Site 5) to 203.04 Mg·ha^-1 (Site 1). The total biomass density (TBD) also followed similar trend, where the lowest value (263.73 Mg·ha^-1) was observed at Site 5 and the highest (921.79 Mg·ha^-1) at Site 1. The total carbon density (TCD) ranged from 131.86 Mg·ha^-1 (Site 5) to 460.89 Mg·ha^-1 (Site 1), which indicates that the carbon density of forests reduces with increasing elevation.展开更多
It remains unclear whether the elevational diversity gradients observed in seed plants across different taxonomic levels (family, genus, and species) are driven by the same macro-environmental variables. In this stu...It remains unclear whether the elevational diversity gradients observed in seed plants across different taxonomic levels (family, genus, and species) are driven by the same macro-environmental variables. In this study, seed plant elevational distribution data from the Lancang River Nature Reserve (Yunnan, China) were used to investigate spatial patterns in diversity and their environ- mental correlates, comparing across taxonomic levels. Environmental variables included energy availability, climate seasonality and environmental heterogeneity. All taxonomic levels (family, genus, and species) were found to have strong elevational richness gradients, with the strength of the gradient weakening at higher taxonomic levels. Spatial patterns in richness were explained by a combination of contemporary environmental variables and the mid-domain effect at all taxonomic levels. The independent effects of temperature- and precipitation-related variables were similar in explaining geographical patterns of family, genus and species richness. Energy, seasonality and heterogeneity variables influenced seed plant spatial richness at different taxonomic levels in similar ways.展开更多
Elevational patterns of trait occurrence and functional diversity provide an important perspective for understanding biodiversity.However,previous studies have mostly examined functional diversity at the community sca...Elevational patterns of trait occurrence and functional diversity provide an important perspective for understanding biodiversity.However,previous studies have mostly examined functional diversity at the community scale.Here,we examined large-scale patterns of trait occurrence and functional diversity in Delphinium along an elevational gradient from 1000 to 5700 m in the Hengduan Mountains,SW China.Elevational distribution and trait data of 102 Delphinium species were compiled to evaluate the patterns of interspecific traits,species richness,and functional diversity.We found that the distribution of species richness showed a unimodal curve that peaked between 3500 and 4000 m;functional diversity and traits showed different patterns along an elevational gradient The functional diversity increased at a lower rate along an elevation gradient,whereas species richness continued to increase.Species with large ranges and non-endemic species were most affected by geometric constraints.Richness of species endemic to the Hengduan Mountains peaked at higher elevations,likely due to increased speciation and restricted dispersion under alpine conditions.We conclude that the middle elevation region is not only the functionally richest but also the most functionally stable region for Delphinium,which could be insurance against environmental change.Extreme conditions and strong environmental filters in an alpine environment may cause the convergence of species traits,which could relate to reducing nutrient trait investment and increasing reproductive trait investment.We conclude that large-scale studies are consistent with previous studies at the community scale.This may indicate that the relationship between functional diversity and species richness across different scales is the same.展开更多
Mountain systems harbor an evolutionarily unique and exceptionally rich biodiversity,especially for amphibians.However,the associated elevational gradients and underlying mechanisms of amphibian diversity in most moun...Mountain systems harbor an evolutionarily unique and exceptionally rich biodiversity,especially for amphibians.However,the associated elevational gradients and underlying mechanisms of amphibian diversity in most mountain systems remain poorly understood.Here,we explored amphibian phylogenetic and functional diversity along a 2600 m elevational gradient on Mount Emei on the eastern margin of the Qinghai-Tibetan Plateau in southwestern China.We also assessed the relative importance of spatial(area)and environmental factors(temperature,precipitation,solar radiation,normalized difference vegetation index,and potential evapotranspiration)in shaping amphibian distribution and community structure.Results showed that the phylogenetic and functional diversities were unimodal with elevation,while the standardized effect size of phylogenetic and functional diversity increased linearly with elevation.Phylogenetic net relatedness,nearest taxon index,and functional net relatedness index all showed a positive to negative trend with elevation,indicating a shift from clustering to overdispersion and suggesting a potential change in key processes from environmental filtering to competitive exclusion.Overall,our results illustrate the importance of deterministic processes in structuring amphibian communities in subtropical mountains,with the dominant role potentially switching with elevation.This study provides insights into the underlying assembly mechanisms of mountain amphibians,integrating multidimensional diversity.展开更多
Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soi...Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change. Using phospholipid fatty acids (PLFA), we investigated soil microbial community composition along an elevational gradient (3094-4131 m above sea level) on Mount Yajiageng, and we explored the impact of plant functional groups and soil chemistry on the soil microbial community. Except for Arbuscular Mycorrhizal fungi (AM fungi) biomarker 18:2ω6,9 increasing significantly, other biomarkers did not show a consistent trend with the elevational gradient. Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 ktmol per g organic carbon (OC), which had the maximum value at the highest site. Bacterial PLFAs exhibited a similar trend with total PLFAs, and its mean values ranged from 0.82 to 1.81 μmol (g OC)-1. The bacterial to fungal biomass ratios had the minimum value at the highest site, which might be related to temperature and soil total nitrogen (TN). The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site. Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model. Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN. Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community, and the interaction between them had no impact on the soil microbial community maybe beeause long-term grazing greatly reduces litter. In sum, although there were obvious differences in soil microbial communities along the elevation gradient, there were no clear elevational trends found in general. Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community. Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.展开更多
Elevation plays a crucial factor in the distribution of plants,as environmental conditions become increasingly harsh at higher elevations.Previous studies have mainly focused on the effects of large-scale elevational ...Elevation plays a crucial factor in the distribution of plants,as environmental conditions become increasingly harsh at higher elevations.Previous studies have mainly focused on the effects of large-scale elevational gradients on plants,with little attention on the impact of smaller-scale gradients.In this study we used 14 microsatellite loci to survey the genetic structure of 332 Juniperus squamata plants along elevation gradient from two sites in the Hengduan Mountains.We found that the genetic structure(single,clonal,mosaic)of J.squamata shrubs is affected by differences in elevational gradients of only 150 m.Shrubs in the mid-elevation plots rarely have a clonal or mosaic structure compared to shrubs in lower-or higher-elevation plots.Human activity can significantly affect genetic structure,as well as reproductive strategy and genetic diversity.Sub-populations at mid-elevations had the highest yield of seed cones,lower levels of asexual reproduction and higher levels of genetic diversity.This may be due to the trade-off between elevational stress and anthropogenic disturbance at mid-elevation since there is greater elevational stress at higher-elevations and greater intensity of anthropogenic disturbance at lower-elevations.Our findings provide new insights into the finer scale genetic structure of alpine shrubs,which may improve the conservation and management of shrublands,a major vegetation type on the Hengduan Mountains and the Qinghai-Tibet Plateau.展开更多
In mountain ecosystems,plants are sensitive to climate changes,and an entire range of species distribution can be observed in a small area.Therefore,mountains are of great interest for climate–growth relationship ana...In mountain ecosystems,plants are sensitive to climate changes,and an entire range of species distribution can be observed in a small area.Therefore,mountains are of great interest for climate–growth relationship analysis.In this study,the Siberian spruce’s(Picea obovata Ledeb.)radial growth and its climatic response were investigated in the Western Sayan Mountains,near the SayanoShushenskoe Reservoir.Sampling was performed at three sites along an elevational gradient:at the lower border of the species range,in the middle,and at the treeline.Divergence of growth trends between individual trees was observed at each site,with microsite landscape-soil conditions as the most probable driver of this phenomenon.Cluster analysis of individual tree-ring width series based on inter-serial correlation was carried out,resulting in two sub-set chronologies being developed for each site.These chronologies appear to have substantial differences in their climatic responses,mainly during the cold season.This response was not constant due to regional climatic change and the local influence of the nearby Sayano-Shushenskoe Reservoir.The main response of spruce to growing season conditions has a typical elevational pattern expected in mountains:impact of temperature shifts with elevation from positive to negative,and impact of precipitation shifts in the opposite direction.Chronologies of trees,growing under more severe micro-conditions,are very sensitive to temperature during September–April and to precipitation during October–December,and they record both inter-annual and long-term climatic variation.Consequently,it would be interesting to test if they indicate the Siberian High anticyclone,which is the main driver of these climatic factors.展开更多
文摘Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical region.Understanding plant diversity patterns with increasing elevation is of high significance,not least for conservation planning.We studied the pattern of species richness,Shannon diversity,endemic richness,endemics ratio,and richness of life forms along a 3900 m elevational transect in Mount Palvar,overlooking the Lut Desert in Southeast Iran.We also analyzed the effect of environmental variables on species turnover along the vertical gradient.A total of 120 vegetation plots(10 m×10 m)were sampled along the elevational transect containing species and environmental data.To discover plant diversity pattern along the elevational gradient,generalized additive model(GAM)was used.Non-metric multidimensional scaling(NMDS)was applied for illustrating the correlation between species composition and environmental variables.We found hump-shaped pattern for species richness,Shannon diversity,endemic richness,and species richness of different life forms,but a monotonic increasing pattern for ratio of endemic species from low to high elevations.Our study confirms the humped pattern of species richness peaking at intermediate elevations along a complete elevational gradient in a semi-arid mountain.The monotonic increase of endemics ratio with elevation in our area as a case study is consistent with global increase of endemism with elevation.According to our results,temperature and precipitation are two important climatic variables that drive elevational plant diversity,particularly in seasonally dry areas.Our study suggests that effective conservation and management are needed for this low latitude mountain area along with calling for long-term monitoring for species redistribution.
基金supported by the National Natural Science Foundation of China(Nos.31900204,32071671,32030071)the Postdoctoral Research Foundation of China(grant no.2019M652674)the Fundamental Research Funds for the Central Universities(grant no.CCNU22LJ003).
文摘Reproductive strategies of sexually dimorphic plants vary in response to the environment.Here,we ask whether the sexual systems of Fagopyrum species(i.e.,selfing homostylous and out-crossing distylous)represent distinct adaptive strategies to increase reproductive success in changing alpine environments.To answer this question,we determined how spatial and temporal factors(e.g.,elevation and peak flowering time)affect reproductive success(i.e.,stigmatic pollen load)in nine wild Fagopyrum species(seven distylous and two homostylous)among 28 populations along an elevation gradient of 1299-3315 m in the Hengduan Mountains,southwestern China.We also observed pollinators and conducted hundreds of hand pollinations to investigate inter/intra-morph compatibility,self-compatibility and pollen limitation in four Fagopyrum species(two distylous and two homostylous).We found that Fagopyrum species at higher elevation generally had bigger flowers and more stigmatic pollen loads;lateflowering individuals had smaller flowers and lower pollen deposition.Stigmatic pollen deposition was more variable in distylous species than in homostylous species.Although seed set was not pollenlimited in all species,we found that fruit set was much lower in distylous species,which rely on frequent pollinator visits,than in homostylous species capable of autonomous self-pollination.Our findings that pollination success increases at high elevations and decreases during the flowering season suggest that distylous and homostylous species have spatially and temporally distinct reproductive strategies related to environment-dependent pollinator activity.
基金carried out in the framework of the 1331 Project of Cultural Ecology Collaborative Innovation Center in Wutai Mountain (00000342)co-financed by Program for the Philosophy and Social Sciences Research of Higher Learning Institutions of Shanxi (2022J027)+1 种基金Applied Basic Research Project of Shanxi Province (202203021221225)Basic Research Project of Xinzhou Science and Technology Bureau (20230501)。
文摘Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity.
基金funded by the project National Institute for Neurological Research(Programme EXCELES,ID Project No.LX22NPO5107)TEAMING:857560(EU)CZ.02.1.01/0.0/0.0/17_043/0009632(CZ)(to FA and JH)。
文摘Frontotemporal lobar degeneration(FTLD)is a form of progressive dementia characterized by degeneration of the frontal and temporal lobes of the brain.This pathology involves a series of cognitive,behavioral,and neurological symptoms that influence personality,decision-making ability,and language.
文摘BACKGROUND The incidence of acute myocardial infarction(AMI)is rising,with cardiac rupture accounting for approximately 2%of deaths in patients with acute ST-segment elevation myocardial infarction(STEMI).Ventricular free wall rupture(FWR)occurs in approximately 2%of AMI patients and is notably rare in patients with non-STEMI.Types of cardiac rupture include left ventricular FWR,ventricular septal rupture,and papillary muscle rupture.The FWR usually leads to acute cardiac tamponade or electromechanical dissociation,where standard resuscitation efforts may not be effective.Ventricular septal rupture and papillary muscle rupture often result in refractory heart failure,with mortality rates over 50%,even with surgical or percutaneous repair options.CASE SUMMARY We present a rare case of an acute non-STEMI patient who suffered sudden FWR causing cardiac tamponade and loss of consciousness immediate before undergoing coronary angiography.Prompt resuscitation and emergency open-heart repair along with coronary artery bypass grafting resulted in successful patient recovery.CONCLUSION This case emphasizes the risks of AMI complications,shares a successful treatment scenario,and discusses measures to prevent such complications.
基金Addis Ababa University office of vice president for research and Technology transfer for funding the thematic research, “Integrated approaches of Molecular Systematics and plant Biodiversity Informatics to Climate Change Mitigation and Monitoring in Ethiopian Mountains”
文摘The aim of this research is to investigate the patterns of vascular plant species richness,diversity,and distribution along an elevation gradient in the Abune Yosef mountain range,Ethiopia.Preferential systematic sampling was employed to collect vegetation and environmental data along the elevation gradient.We found that plant species richness declines monotonically from low to high elevations.Specifically,vascular plant species richness and diversity were lower in the Afroalpine grassland(high elevation)than in the Dry evergreen Afromontane forest and Ericaceous forest(low elevations).In contrast,endemic vascular plant richness was significantly higher in the Afroalpine grassland than in the Dry evergreen Afromontane forest and Ericaceous forest.Elevation showed a significant impact on the richness,diversity,and endemism of vascular plants.According to Sorensen's coefficient,the similarity between Dry evergreen Afromontane forest and Ericaceous forest vegetation types is higher(32%)than the similarity between Ericaceous forest and Afroalpine grassland(18%).Only 5%similarity was recorded between the Dry evergreen Afromontane forest and Afroalpine grassland.Growth forms showed different elevationai richness patterns.Trees and liana increased monotonically up to 3300 m.Shrub and herb richness patterns followed a hump-shaped and inverted hump-shaped pattern along the elevation gradient.The elevation patterns of vascular plant species richness,diversity,and growth form in the present study may be attributed to differences in management intensity,spatial heterogeneity,microclimatic variations,and anthropogenic disturbances.
基金supported by the National Natural Science Foundation of China(3157044531570601+2 种基金31500509 and31570605)Postdoctoral Science Foundation of China(2013M540714 and 2014T70880)Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangze River
文摘Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes.Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter decomposition in those ecosystems. Here, we conducted a2-year-long litter decomposition experiment along an elevational gradient from 3000 to 3600 m to determine the potential effects of litter quality, climate warming and freeze-thaw on the mass losses of three litter types [dragon spruce(Picea asperata Mast.), red birch(Betula albosinensis Burk.), and minjiang fir(Abies faxoniana Rehd. et Wild)]. Marked differences in mass loss were observed among the litter types and sampling dates. Decay constant(k) values of red birch were significantly higher than those of the needle litters. However, mass losses between elevations did not differ significantly for any litter type.During the winter, lost mass contributed 18.3-28.8 % of the net loss rates of the first year. Statistical analysis showed that the relationships between mass loss and litter chemistry or their ratios varied with decomposition periods. Our results indicated that short-term field incubations could overestimate the k value of litter decomposition.Considerable mass was lost from subalpine forest litters during the wintertime. Potential future warming may not affect the litter decomposition in the subalpine forest ecosystems of eastern Tibetan Plateau.
基金funded by the National Natural Science Foundation of China (41271126)the National Basic Research Program of China (2009CB825105)
文摘Mountainous ecosystems are considered highly sensitive and vulnerable to natural disasters and cli- rnatic changes. Therefore, quantifying the effects of elevation on grassland productivity to understand ecosys- tem-climate interactions is vital for mountainous ecosystems. Water-use efficiency (WUE) provides a useful index for understanding the metabolism of terrestrial ecosystems as well as for evaluating the degradation of grasslands. This paper explored net primary productivity (NPP) and WUE in grasslands along an elevational gradient ranging from 400 to 3,400 m asl in the northern Tianshan Mountains-southern Junggar Basin (TMJB), Xinjiang of China, using the Biome-BGC model. The results showed that: 1 ) the NPP increased by 0.05 g C/(m2-a) with every increase of 1-m elevation, reached the maximum at the mid-high elevation (1,600 m asl), and then decreased by 0.06 g C/(m2.a) per 1-m increase in elevation; 2) the grassland NPP was positively correlated with temperature in alpine meadow (AM, 2,700-3,500 m asl), mid-mountain forest meadow (MMFM, 1,650-2,700 m asl) and low-mountain dry grassland (LMDG, 650-1,650 m asl), while positive correlations were found between NPP and annual precipitation in plain desert grassland (PDG, lower than 650 m asl); 3) an increase (from 0.08 to 1.09 g C/(m2.a)) in mean NPP for the grassland in TMJB under a real climate change scenario was observed from 1959 to 2009; and 4) remarkable differences in WUE were found among different elevations, in general, WUE increased with decreasing elevation, because water availability is lower at lower elevations; however, at elevations lower than 540 m asl, we did observe a decreasing trend of WUE with decreasing elevation, which may be due to the sharp changes in canopy cover over this gradient. Our research suggests that the NPP simulated by Biome-BGC is consistent with field data, and the modeling provides an opportunity to further evaluate interactions between environmental factors and ecosystem productivity.
基金supported by the Mt.Kenya East Pilot Biodiversity Project by Global Environmental Facility to Kenya Wildlife Service
文摘Faunal species richness is traditionally assumed to decrease with increasing elevation and decreasing prmary productivity. Species richness is reported to peak at mid-elevation. This survey examines the herpetofaunal diversity and distribution in Mt. Kenya (central Kenya) by testing the hypothesis that changes in species richness with elevation relate to elevation-dependent changes in climate. Sampling along transects from an elevation of approximately 1 700 m in Chogoda forest block (wind-ward side) and approximately 2 600 m in Sirimon block (rain shadow zone) upwards in March 2009. This starts from the forest to montane alpine zones. Sampling of reptiles and amphibians uses pitfall traps associated with ddfl fences, time-limited searches and visual encounter surveys. The results show that herpetofaunal richness differs among three vegetation zones along the elevation gradient. Chogoria has higher biodiversity than Sirimon. More species occur at low and middle elevations and few exist at high elevations. The trends are consistent with expected optimum water and energy variables. The lower alpine montane zone has high species richness but low diversity due to domi- nance of some high elevations species. Unambiguous data do not support a mid-domain effect (mid-elevation peak) because the observed trend better fits a model in which climatic variables (rainfall and temperature) control species richness, which indirectly measures productivity. It is important to continue protection of all indigenous forests, especially at low to mid elevations. These areas are vulnerable to human destruction yet are home to some endemic species. Firebreaks can limit the spread of the perennial wildfires, especially on the moor- lands.
基金supported by the National Natural Science Foundation of China Granted to Yongjie Wu(No.31501851,31772478)the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists to Per Alstrom(No.2011T2S04)
文摘Background:In biological systems,biological diversity often displays a rapid turn-over across elevations.This defining feature has made mountains classic systems for studying the spatial variation in diversity.Because patterns of elevational diversity can vary among lineages and mountain systems it remains difficult to extrapolate findings from one montane region to another,or among lineages.In this study,we assessed patterns and drivers of avian diversity along an elevational gradient on the eastern slope of Mt.Gongga,the highest peak in the Hengduan Mountain Range in central China,and a mountain where comprehensive studies of avian diversity are still lacking.Methods:We surveyed bird species in eight 400-m elevational bands from 1200 to 4400 m a.s.l.between 2012 and 2017.To test the relationship between bird species richness and environmental factors,we examined the relative importance of seven ecological variables on breeding season distribution patterns:land area(LA),mean daily temperature(MDT),seasonal temperature range(STR),the mid-domain effect(MDE),seasonal precipitation(SP),invertebrate biomass(IB) and enhanced vegetation index(EVI).Climate data were obtained from five local meteorological stations and three temperature/relative humidity smart sensors in 2016.Results:A total of 219 bird species were recorded in the field,of which 204 were recorded during the breeding season(April–August).Species richness curves(calculated separately for total species,large-ranged species,and smallranged species) were all hump-shaped.Large-ranged species contributed more to the total species richness pattern than small-ranged species.EVI and IB were positively correlated with total species richness and small-ranged species richness.LA and MDT were positively correlated with small-ranged species richness,while STR and SP were negatively correlated with small-ranged species richness.MDE was positively correlated with large-ranged species richness.When we considered the combination of candidate factors using multiple regression models and model-averaging,total species richness and large-ranged species richness were correlated with STR(negative) and MDE(positive),while small-ranged species richness was correlated with STR(negative) and IB(positive).Conclusions:Although no single key factor or suite of factors could explain patterns of diversity,we found that MDE,IB and STR play important but varying roles in shaping the elevational richness patterns of different bird species categories.Model-averaging indicates that small-ranged species appear to be mostly influenced by IB,as opposed to large-ranged species,which exhibit patterns more consistent with the MDE model.Our data also indicate that the species richness varied between seasons,offering a promising direction for future work.
基金supported by the National Natural Science Foundation of China (Grants No. 41771051 and No. 41630750)the National Key Basic Research Special Foundation of China (Grants No. 2011FY110300)
文摘The forest litter is an essential reservoir of nutrients in forests, supplying a large part of absorbable base cations(BC) to topsoil, and facilitating plant growth within litter-soil system. To characterize elevational patterns of base cation concentrations in the forest litter and topsoil, and explore the effects of climate and tree species, we measured microclimate and collected the forest litter and topsoil(0-10 cm) samples across an elevational range of more than 2000 m(1243 ~ 3316 m a.s.l.),and analyzed the concentrations of BC in laboratory. Results showed that: 1) litter Ca concentration displayed a hump-shaped pattern along the elevational gradients, but litter K and Mg showed saddle-shaped patterns. Soil Ca concentration increased with elevation, while soil K and Mg had no significant changes. 2) Ca concentration in the forest litter under aspen(Populus davidiana) was significantly higher than that in all other species, but in topsoil, Ca concentration was higher under coniferous larch and fir(Larix chinensis and Abies fargesii). Litter K and Mg concentrations was higher under coniferous larch and fir, whereas there were nosignificant differences among tree species in the concentrations of K and Mg in topsoil. 3) Climatic factors including mean annual temperature(MAT), growing season precipitation(GSP) and non-growing season precipitation(NGSP) determined BC concentrations in the forest litter and topsoil. Soil C/N and C/P also influenced BC cycling between litter and soil. Observation along elevations within different tree species implies that above-ground tree species can redistribute below-ground cations, and this process is profoundly impacted by climate. Litter and soil Ca, K and Mg with different responses to environmental variables depend on their soluble capacity and mobile ability.
基金supported by the National Key Basic Research Program of China (2014CB954100)Yunnan Provincial Foundation of Science and Technology (2014GA003)the QueenslandChinese Academy of Sciences Biotechnology Fund(GJHZ1130)
文摘Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients in different climatic zones is still unknown. This paper investigates seed density,species composition and nonconstituent species of forest soil seed banks in Yunnan Province, southwest China. Similarity between the soil seed bank and standing vegetation was also examined. We collected soil samples from sites spanning 12 elevations in tropical rain forests, subtropical evergreen broadleaved forests and subalpine coniferous forests, and transported them to a glasshouse for germination trials for species identification. The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests. Seeds of woody species dominated the soil seed banks of tropical and subtropical forests, while herbs dominated those of subalpine forests.The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests, followed by subtropical forests but were completely absent from subalpine forests.
基金funded by the Korea Green Promotion Agency, Korea Forest Service
文摘Recently, a phylogenetic diversity and community structure analysis as complementary to species-centric approaches in biodiversity studies provides new insights into the processes of community assembly. In this study, we analyzed species and phylogenetic diversity and community structures for woody and herbaceous plants along two elevational transects on Mt. Baekhwa, South Korea. The species richness and phylogenetic diversity of woody plants showed monotonic declining patterns with increasing elevation along all transects, whereas herbaceous plants showed different patterns, such as no relationship and a reversed unimodal pattern, between the study transects. The main drivers of these patterns were climate and habitat variables for woody and herbaceous plants, respectively. In addition, the phylogenetic community structure primarily showed phylogenetic clustering regulated by deterministic processes, especially environmental filtering, such as climate or habitat factors, along the two transects, although herbaceous plants along a transect depicted phylogenetic randomness as a result of a neutral process. Our findings suggest that deterministic and neutral processes may simultaneously control the community structures along small-scale elevational gradients such as local transects, although the deterministic process may be the predominant type.
文摘The estimation of carbon density of high altitude forests was carried out at five different sites along an elevational gradient from 1550 m to 3550 m in a part of Kedarnath Wildlife Sanctuary, which is one of the largest protected areas of the Garhwal Himalaya, India. Among the study sites the above ground biomass density (AGBD) ranged from 202.72 Mg·ha^-1 (Site 5) to 718.75 Mg·ha^-1 (Site 1) and below ground biomass density (BGBD) from 61.00 Mg·ha^-1 (Site 5) to 203.04 Mg·ha^-1 (Site 1). The total biomass density (TBD) also followed similar trend, where the lowest value (263.73 Mg·ha^-1) was observed at Site 5 and the highest (921.79 Mg·ha^-1) at Site 1. The total carbon density (TCD) ranged from 131.86 Mg·ha^-1 (Site 5) to 460.89 Mg·ha^-1 (Site 1), which indicates that the carbon density of forests reduces with increasing elevation.
基金supported by the Key Project of National Key Research and Development Plans(Grant No.2016YFC0503106)
文摘It remains unclear whether the elevational diversity gradients observed in seed plants across different taxonomic levels (family, genus, and species) are driven by the same macro-environmental variables. In this study, seed plant elevational distribution data from the Lancang River Nature Reserve (Yunnan, China) were used to investigate spatial patterns in diversity and their environ- mental correlates, comparing across taxonomic levels. Environmental variables included energy availability, climate seasonality and environmental heterogeneity. All taxonomic levels (family, genus, and species) were found to have strong elevational richness gradients, with the strength of the gradient weakening at higher taxonomic levels. Spatial patterns in richness were explained by a combination of contemporary environmental variables and the mid-domain effect at all taxonomic levels. The independent effects of temperature- and precipitation-related variables were similar in explaining geographical patterns of family, genus and species richness. Energy, seasonality and heterogeneity variables influenced seed plant spatial richness at different taxonomic levels in similar ways.
基金We thank Jiahui Chen for his kind help to provide the data source of functional traits.We thank Lu Sun for his kind help with R.This study was supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0502)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20050203)and the Key Projects of the Joint Fund of the National Natural Science Foundation of China(U1802232).
文摘Elevational patterns of trait occurrence and functional diversity provide an important perspective for understanding biodiversity.However,previous studies have mostly examined functional diversity at the community scale.Here,we examined large-scale patterns of trait occurrence and functional diversity in Delphinium along an elevational gradient from 1000 to 5700 m in the Hengduan Mountains,SW China.Elevational distribution and trait data of 102 Delphinium species were compiled to evaluate the patterns of interspecific traits,species richness,and functional diversity.We found that the distribution of species richness showed a unimodal curve that peaked between 3500 and 4000 m;functional diversity and traits showed different patterns along an elevational gradient The functional diversity increased at a lower rate along an elevation gradient,whereas species richness continued to increase.Species with large ranges and non-endemic species were most affected by geometric constraints.Richness of species endemic to the Hengduan Mountains peaked at higher elevations,likely due to increased speciation and restricted dispersion under alpine conditions.We conclude that the middle elevation region is not only the functionally richest but also the most functionally stable region for Delphinium,which could be insurance against environmental change.Extreme conditions and strong environmental filters in an alpine environment may cause the convergence of species traits,which could relate to reducing nutrient trait investment and increasing reproductive trait investment.We conclude that large-scale studies are consistent with previous studies at the community scale.This may indicate that the relationship between functional diversity and species richness across different scales is the same.
基金supported by the National Natural Science Foundation of China(31770568,32071544)Natural Science Foundation of Shanghai(20ZR1418100)“Light of West China”Program of the Chinese Academy of Sciences。
文摘Mountain systems harbor an evolutionarily unique and exceptionally rich biodiversity,especially for amphibians.However,the associated elevational gradients and underlying mechanisms of amphibian diversity in most mountain systems remain poorly understood.Here,we explored amphibian phylogenetic and functional diversity along a 2600 m elevational gradient on Mount Emei on the eastern margin of the Qinghai-Tibetan Plateau in southwestern China.We also assessed the relative importance of spatial(area)and environmental factors(temperature,precipitation,solar radiation,normalized difference vegetation index,and potential evapotranspiration)in shaping amphibian distribution and community structure.Results showed that the phylogenetic and functional diversities were unimodal with elevation,while the standardized effect size of phylogenetic and functional diversity increased linearly with elevation.Phylogenetic net relatedness,nearest taxon index,and functional net relatedness index all showed a positive to negative trend with elevation,indicating a shift from clustering to overdispersion and suggesting a potential change in key processes from environmental filtering to competitive exclusion.Overall,our results illustrate the importance of deterministic processes in structuring amphibian communities in subtropical mountains,with the dominant role potentially switching with elevation.This study provides insights into the underlying assembly mechanisms of mountain amphibians,integrating multidimensional diversity.
基金supported by the CAS/SAFEA International Partnership Program for Creative Research Teams (KZZD-EW-TZ-06)
文摘Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change. Using phospholipid fatty acids (PLFA), we investigated soil microbial community composition along an elevational gradient (3094-4131 m above sea level) on Mount Yajiageng, and we explored the impact of plant functional groups and soil chemistry on the soil microbial community. Except for Arbuscular Mycorrhizal fungi (AM fungi) biomarker 18:2ω6,9 increasing significantly, other biomarkers did not show a consistent trend with the elevational gradient. Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 ktmol per g organic carbon (OC), which had the maximum value at the highest site. Bacterial PLFAs exhibited a similar trend with total PLFAs, and its mean values ranged from 0.82 to 1.81 μmol (g OC)-1. The bacterial to fungal biomass ratios had the minimum value at the highest site, which might be related to temperature and soil total nitrogen (TN). The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site. Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model. Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN. Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community, and the interaction between them had no impact on the soil microbial community maybe beeause long-term grazing greatly reduces litter. In sum, although there were obvious differences in soil microbial communities along the elevation gradient, there were no clear elevational trends found in general. Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community. Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.
基金study was funded by the National Natural Science Foundation of China(grant number:U20A2080,31622015)Sichuan University(Fundamental Research Funds for the Central Universities,SCU2021D006,SCU2020D003).
文摘Elevation plays a crucial factor in the distribution of plants,as environmental conditions become increasingly harsh at higher elevations.Previous studies have mainly focused on the effects of large-scale elevational gradients on plants,with little attention on the impact of smaller-scale gradients.In this study we used 14 microsatellite loci to survey the genetic structure of 332 Juniperus squamata plants along elevation gradient from two sites in the Hengduan Mountains.We found that the genetic structure(single,clonal,mosaic)of J.squamata shrubs is affected by differences in elevational gradients of only 150 m.Shrubs in the mid-elevation plots rarely have a clonal or mosaic structure compared to shrubs in lower-or higher-elevation plots.Human activity can significantly affect genetic structure,as well as reproductive strategy and genetic diversity.Sub-populations at mid-elevations had the highest yield of seed cones,lower levels of asexual reproduction and higher levels of genetic diversity.This may be due to the trade-off between elevational stress and anthropogenic disturbance at mid-elevation since there is greater elevational stress at higher-elevations and greater intensity of anthropogenic disturbance at lower-elevations.Our findings provide new insights into the finer scale genetic structure of alpine shrubs,which may improve the conservation and management of shrublands,a major vegetation type on the Hengduan Mountains and the Qinghai-Tibet Plateau.
基金funded by the Russian Foundation for Basic Research (project no.17-04-00315)
文摘In mountain ecosystems,plants are sensitive to climate changes,and an entire range of species distribution can be observed in a small area.Therefore,mountains are of great interest for climate–growth relationship analysis.In this study,the Siberian spruce’s(Picea obovata Ledeb.)radial growth and its climatic response were investigated in the Western Sayan Mountains,near the SayanoShushenskoe Reservoir.Sampling was performed at three sites along an elevational gradient:at the lower border of the species range,in the middle,and at the treeline.Divergence of growth trends between individual trees was observed at each site,with microsite landscape-soil conditions as the most probable driver of this phenomenon.Cluster analysis of individual tree-ring width series based on inter-serial correlation was carried out,resulting in two sub-set chronologies being developed for each site.These chronologies appear to have substantial differences in their climatic responses,mainly during the cold season.This response was not constant due to regional climatic change and the local influence of the nearby Sayano-Shushenskoe Reservoir.The main response of spruce to growing season conditions has a typical elevational pattern expected in mountains:impact of temperature shifts with elevation from positive to negative,and impact of precipitation shifts in the opposite direction.Chronologies of trees,growing under more severe micro-conditions,are very sensitive to temperature during September–April and to precipitation during October–December,and they record both inter-annual and long-term climatic variation.Consequently,it would be interesting to test if they indicate the Siberian High anticyclone,which is the main driver of these climatic factors.