Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,t...Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,the influence of diamond nanoparticles(DNPs)on the tribological properties of lubricants is investigated through friction experiments.Additionally,the friction characteristics of lubricants regarding ellipsoidal particle shape are investigated using molecular dynamics(MD)simulations.The results show that DNPs can drastically lower the lubricant's friction coefficientμfrom 0.21 to 0.117.The shearing process reveals that as the aspect ratio(α)of the nanoparticles approaches 1.0,the friction performance improves,and wear on the wall diminishes.At the same time,the shape of the nanoparticles tends to be spherical.When 0.85≤α≤1.0,rolling is ellipsoidal particles'main form of motion,and the friction force changes according to a periodic sinusoidal law.In the range of 0.80≤α<0.85,ellipsoidal particles primarily exhibit sliding as the dominant movement mode.Asαdecreases within this range,the friction force progressively increases.The friction coefficientμcalculated through MD simulation is 0.128,which is consistent with the experimental data.展开更多
A quantum steering ellipsoid(QSE)is a visual characterization for bipartite qubit systems,and it is also a novel avenue for describing and detecting quantum correlations.Herein,by using a QSE,we visualize and witness ...A quantum steering ellipsoid(QSE)is a visual characterization for bipartite qubit systems,and it is also a novel avenue for describing and detecting quantum correlations.Herein,by using a QSE,we visualize and witness the first-order coherence(FOC),Bell nonlocality(BN)and purity under non-inertial frames.Also,the collective influences of the depolarizing channel and the non-coherence-generating channel(NCGC)on the FOC,BN and purity are investigated in the QSE formalism.The results reveal that the distance from the center of the QSE to the center of the Bloch sphere visualizes the FOC of a bipartite system,the lengths of the QSE semiaxis visualize the BN,and the QSE's shape and position dominate the purity of the system.One can capture the FOC,BN and purity via the shape and position of the QSE in the non-inertial frame.The depolarizing channel(the NCGC)gives rise to the shrinking and degradation(the periodical oscillation)of the QSE.One can use these traits to visually characterize and detect the FOC,BN and purity under the influence of external noise.Of particular note is that the condition for the QSE to achieve the center of the Bloch sphere cannot be influenced by the depolarizing channel and the NCGC.The characterization shows that the conditions for the disappearance of the FOC are invariant under the additional influences of the depolarizing channel and NCGC.展开更多
We consider the so-called Thomson problem which refers to finding the equilibrium distribution of a finite number of mutually repelling point charges on the surface of a sphere, but for the case where the sphere is re...We consider the so-called Thomson problem which refers to finding the equilibrium distribution of a finite number of mutually repelling point charges on the surface of a sphere, but for the case where the sphere is replaced by a spheroid or ellipsoid. To get started, we first consider the problem in two dimensions, with point charges on circles (for which the equilibrium distribution is intuitively obvious) and ellipses. We then generalize the approach to the three-dimensional case of an ellipsoid. The method we use is to begin with a random distribution of charges on the surface and allow each point charge to move tangentially to the surface due to the sum of all Coulomb forces it feels from the other charges. Deriving the proper equations of motion requires using a projection operator to project the total force on each point charge onto the tangent plane of the surface. The position vectors then evolve and find their final equilibrium distribution naturally. For the case of ellipses and ellipsoids or spheroids, we find that multiple distinct equilibria are possible for certain numbers of charges, depending on the starting conditions. We characterize these based on their total potential energies. Some of the equilibria found turn out to represent local minima in the potential energy landscape, while others represent the global minimum. We devise a method based on comparing the moment-of-inertia tensors of the final configurations to distinguish them from one another.展开更多
A novel modeling method which can restore the shape of the femoral head with collapse induced by ischemic necrosis is proposed. First, sequential tomograms of the hip are obtained from a CT scan; secondly, an accurate...A novel modeling method which can restore the shape of the femoral head with collapse induced by ischemic necrosis is proposed. First, sequential tomograms of the hip are obtained from a CT scan; secondly, an accurate and automatic method is used to extract the profile of the acetabulum; thirdly, a hybrid method is utilized to gather fiducial marks on the acetabulum; fourthly, bulky error sampling points are removed. Finally, an ellipsoid fitting method is used to fit the ellipsoid model of the femoral head. Two male sufferers with different necrosis extents are chosen as experimental subjects for contrastive simulation. Fifty cases of different ages (from 25 to 79 years old) are utilized for statistical comparisons of matching errors. The prosthetic models highly resemble the primary shape of the femoral head in health. This new method provides not only a theoretical model for accurate operation position fixing in an orthopaedics clinic, but it is also an innovative practical means for the individual manufacture of artificial femoral heads.展开更多
A novel ellipsoidal acoustic infinite element is proposed. It is based a new pressure representation, which can describe and solve the ellipsoidal acoustic field more exactly. The shape functions of this novel acousti...A novel ellipsoidal acoustic infinite element is proposed. It is based a new pressure representation, which can describe and solve the ellipsoidal acoustic field more exactly. The shape functions of this novel acoustic infinite element are similar to the (Burnett's) method, while the weight functions are defined as the product of the complex conjugates of the shaped functions and an additional weighting factor. The code of this method is cheap to generate as for 1-D element because only 1-D integral needs to be numerical. Coupling with the standard finite element, this method provides a capability for very efficiently modeling acoustic fields surrounding structures of virtually any practical shape. This novel method was deduced in brief and the conclusion was kept in detail. To test the feasibility of this novel method efficiently,in the examples the infinite elements were considered,excluding the finite elements relative. This novel ellipsoidal acoustic infinite element can deduce the analytic solution of an oscillating sphere. The example of a prolate spheroid shows that the novel infinite element is superior to the boundary element and other acoustic infinite elements. Analytical and numerical results of these examples show that this novel method is feasible.展开更多
Discrete element model was developed to simulate the ellipsoidal particles moving in the moving bed. Multi-element model was used to describe a ellipsoidal particle, the contact detection algorithm of ellipsoidal part...Discrete element model was developed to simulate the ellipsoidal particles moving in the moving bed. Multi-element model was used to describe a ellipsoidal particle, the contact detection algorithm of ellipsoidal particle was developed, and both contact force and gravity force were considered in the models. The simulation results were validated by our experiment. Three algorithms for representing an ellipsoidal particle were compared in macro and micro aspects. The results show that there exists big difference in the microscopic parameters such as kinetic energy, rotational kinetic energy, deformation, contact force and collision number which leads to the difference of macroscopic parameters. The relative error in the discharge rate and tracer particle position is the largest between 3-tangent-element representation and experimental results. The flow pattern is similar for the 5-element and 3-intersection representations. The only difference is the discharge rate of 5-element representation is larger than the experimental value and that of the 3-intersection representation has the contrary result. Finally the 3-intersection- element reoresentation is chosen in the simulation due to less comouting time than that of the 5-element renresentation.展开更多
The two-step hydro-bulge forming technique was proposed to manufacture the ellipsoidal shell with the length ratio of the long axis to the short axis larger than 1.4. A central tube was introduced into the first step ...The two-step hydro-bulge forming technique was proposed to manufacture the ellipsoidal shell with the length ratio of the long axis to the short axis larger than 1.4. A central tube was introduced into the first step of the hydro-bulge forming process to constrain the over growth of the short axis during bulging,and then the central tube was replaced with two polar plates in the second step of the hydro-bulge forming process to manufacture an integral ellipsoidal shell. It is shown that the central tube restricts the growth of the short axis and simultaneously reduces the shrunk tendency of the long axis. The wrinkling occurs due to the latitudinal compressive stress at the equator at the early stage of hydro-bulge forming. However,with the increase of internal pressure,the compressive stress areas gradually decrease and finally the tensile latitudinal stress occupies approximately the whole shell,thus the wrinkles are eliminated. A sound ellipsoidal shell with the axis length ratio of 1.8 is obtained after two-step hydro bulging.展开更多
Acoustic characteristics of a pulse detonation engine(PDE) with and without an ellipsoidal reflector are numerically and experimentally investigated. A two-dimensional(2 D) non-splitting unstructured triangular me...Acoustic characteristics of a pulse detonation engine(PDE) with and without an ellipsoidal reflector are numerically and experimentally investigated. A two-dimensional(2 D) non-splitting unstructured triangular mesh Euler solver based on the space-time conservation element and solution element(CE/SE) method is employed to simulate the flow field of a PDE.The numerical results clearly demonstrate the external flow field of the PDE. The effect of an ellipsoidal reflector on the flow field characteristic near the PDE exit is investigated. The formation process of reflected shock wave and reflected jet shock are reported in detail. An acoustic measurement system is established for the PDE acoustic testing. The experimental results show that the ellipsoidal reflector changes the sound waveform and directivity of PDE sound. The reflected shock wave and reflected jet shock result in two more positive pressure peaks in the sound waveform. The ellipsoidal reflector changes the directivity of PDE sound from 20 to 0. It is found that the peak sound pressure level(PSPL) and overall sound pressure level(OASPL) each obtain an increment when the PDE is installed with a reflector. The maximum relative increase ratio of PSPL and OASPL are obtained at the focus point F2, whose values are 6.1% and 6.84% respectively. The results of the duration of the PDE sound indicate that the reflecting and focusing wave generated by the reflector result in the increment of A duration and B duration before and near focus point F2. Results show that the ellipsoidal reflector has a great influence on the acoustic characteristic of PDE sound. The research is helpful for understanding the influence of an ellipsoidal reflector on the formation and propagation process of PDE sound.展开更多
In recent years, the method of magnetic survey as one of the new techniques in geological and geophysical studies is known. In this study to determine the shape of the stress field of the two methods, Anisotropy of Ma...In recent years, the method of magnetic survey as one of the new techniques in geological and geophysical studies is known. In this study to determine the shape of the stress field of the two methods, Anisotropy of Magnetic Susceptibility (AMS) and paleostress?have been used. Paleomagnetism is the characteristics of magnetic rocks. Some issues in associated with the past places of continental and oceanic plates can be solved. AMS is one of the paleomagnetism methods that pay to measurement of parameters (which are reflector of the magnetic fabrics rocks). It is presenting an ellipsoid with three-axis perpendicular to each other that defines magnetic ellipsoid. In this regard, the number of 12 stations in different rocks (Jurassic to Quaternary) in the southern region of Ardebil sampling was conducted. In this connection, the study of magnetic fabrics has shown an elliptical magnetic susceptibility with the prolate shape. For the separation of paleostress phases in the Khalkhal area using the analysis of the paleostress based on the study of heterogeneous fault-slip data and sliding lineaments. Firstly, data were picked from 10 stations, and after their analysis, the elliptical shape (prolate) has been determinated. The shape of the ellipsoid, based on AMS and paleostress methods and their results show that in both methods the shape of the stress field is prolate.展开更多
Let B2,p:= {z ∈ C2: |z1|2+ |z2|p< 1}(0 < p < 1). Then, B2,p(0 < p < 1) is a non-convex complex ellipsoid in C2 without smooth boundary. In this article, we establish a boundary Schwarz lemma at z0 ...Let B2,p:= {z ∈ C2: |z1|2+ |z2|p< 1}(0 < p < 1). Then, B2,p(0 < p < 1) is a non-convex complex ellipsoid in C2 without smooth boundary. In this article, we establish a boundary Schwarz lemma at z0 ∈ ?B2,p for holomorphic self-mappings of the non-convex complex ellipsoid B2,p, where z0 is any smooth boundary point of B2,p.展开更多
The existing research of the motion optimization of multi-axis machine tools is mainly based on geometric and kinematic constraints, which aim at obtaining minimum-time trajectories and finding obstacle-free paths. In...The existing research of the motion optimization of multi-axis machine tools is mainly based on geometric and kinematic constraints, which aim at obtaining minimum-time trajectories and finding obstacle-free paths. In motion optimization, the stiffness characteristics of the whole machining system, including machine tool and cutter, are not considered. The paper presents a new method to establish a general stiffness model of multi-axis machining system. An analytical stiffness model is established by Jacobi and point transformation matrix method. Based on the stiffness model, feed-direction stiffness index is calculated by the intersection of force ellipsoid and the cutting feed direction at the cutter tip. The stiffness index can help analyze the stiffness performance of the whole machining system in the available workspace. Based on the analysis of the stiffness performance, multi-axis motion optimization along tool paths is accomplished by mixed programming using Matlab and Visual C++. The effectiveness of the motion optimization method is verified by the experimental research about the machining performance of a 7-axis 5-linkage machine tool. The proposed research showed that machining stability and production efficiency can be improved by multi-axis motion optimization based on the anisotropic force ellipsoid of the whole machining system.展开更多
It is well known that the line of intersection of an ellipsoid and a plane is an ellipse. In this note simple formulas for the semi-axes and the center of the ellipse are given, involving only the semi-axes of the ell...It is well known that the line of intersection of an ellipsoid and a plane is an ellipse. In this note simple formulas for the semi-axes and the center of the ellipse are given, involving only the semi-axes of the ellipsoid, the componentes of the unit normal vector of the plane and the distance of the plane from the center of coordinates. This topic is relatively common to study, but, as indicated in [1], a closed form solution to the general problem is actually very difficult to derive. This is attemped here. As applications problems are treated, which were posed in the internet [1,2], pertaining to satellite orbits in space and to planning radio-therapy treatment of eyes.展开更多
The interfacial transition zone (ITZ) between the aggregates and the bulk paste is the weakest zone of ordinary concrete, which largely determines its mechanical and transporting properties. However, a complete unders...The interfacial transition zone (ITZ) between the aggregates and the bulk paste is the weakest zone of ordinary concrete, which largely determines its mechanical and transporting properties. However, a complete understanding and a quantitative modeling of ITZ are still lacking. Consequently, an integrated modeling and experimental study were conducted. First, the theoretical calculation model of the ITZ volume fraction about the rotary ellipsoidal aggregate particles was established based on the nearest surface function formula. Its calculation programs were written based on Visual Basic 6.0 language and achieved visualization and functionalization. Then, the influencing factors of ITZ volume fraction of the ellipsoidal aggregate particles and the overlapping degree between the ITZ were systematically analyzed. Finally, the calculation models of ITZ volume fraction on actual ellipsoidal aggregate were given, based on cobblestones or pebbles particles with naturally ellipsoidal shape. The results indicate that the calculation model proposed is highly reliable.展开更多
Streamsurfaces in diffusion tensor fields are used to represent structures with pri- marily planar diffusion. So far, however, no effort has been made on the visualization of the anisotropy of diffusion on them, altho...Streamsurfaces in diffusion tensor fields are used to represent structures with pri- marily planar diffusion. So far, however, no effort has been made on the visualization of the anisotropy of diffusion on them, although this information is very important to identify the problematic regions of these structures. We propose two methods to display this anisotropy information. The first one employs a set of merging ellipsoids, which simultaneously character- ize the local tensor details - anisotropy - on them and portray the shape of the streamsurfaces. The weight between the streamsurfaces continuity and the discrete local tensors can be inter- actively adjusted by changing some given parameters. The second one generates a dense LIC (line integral convolution) texture of the two tangent eigenvector fields along the streamsurfaces firstly, and then blends in some color mapping indicating the anisotropy information. For high speed and high quality of texture images, we confine both the generation and the advection of the LIC texture in the image space. Merging ellipsoids method reveals the entire anisotropy information at discrete points by exploiting the geometric attribute of ellipsoids, and thus suits for local and detailed examination of the anisotropy; the texture-based method gives a global representation of the anisotropy on the whole streamsurfaces with texture and color attributes. To reveal the anisotropy information more efficiently, we integrate the two methods and use them at two different levels of details.展开更多
Distance between the main land and island is so long that it is very difficult to precisely connect the height datum across the sea with the traditional method like the trigonometric leveling, or it is very expensive ...Distance between the main land and island is so long that it is very difficult to precisely connect the height datum across the sea with the traditional method like the trigonometric leveling, or it is very expensive and takes long time to implement the height transfer with the geopotential technique. We combine the data of GPS surveying, astro-geodesy and EGM2008 to precisely connect the orthometric height across the sea with the improved astronomical leveling method in the paper. The Qiongzhou Strait is selected as the test area for the height connection over the sea. We precisely determine the geodetic latitudes, longitudes, heights and deflections of the vertical for four points on both sides across the strait. Modeled deflections of the vertical along the height connecting routes over the sea are determined with EGM2008 model based on the geodetic positions and heights of the sea segmentation points from DNSC08MSS model. Differences of the measured and modeled deflections of the vertical are calculated at four points on both sides and linearly change along the route. So the deflections of the vertical along the route over the sea can be improved by the linear interpolation model. The results are also in accord with those of trigonometirc levelings. The practical case shows that we can precisely connect the orthometric height across the Qiongzhou Strait to satisfy the requirement of order 3 leveling network of China. The method is very efficient to precisely connect the height datum across the sea along the route up to 80 km.展开更多
Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide techni...Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide technical support for special transmission 3D model simulation. Currently, theoretical calculation and experimental method are difficult to exactly solve special transmission contact analysis problem. How to reduce calculation and computer memories consume and meet calculation precision is key to resolve special transmission contact analysis problem. According to 3D model simulation and surface reconstruction of quasi ellipsoid gear is difficulty, this paper employes meshless local Petrov-Galerkin (MLPG) method. In order to reduce calculation and computer memories consume, we disperse tooth mesh into finite points--sparseness points cloud or grid mesh, and then we do interpolation reconstruction in some necessary place of the 3D surface model during analysis. Moving least square method (MLSM) is employed for tooth mesh interpolation reconstruction, there are some advantages to do interpolation by means of MLSM, such as high precision, good flexibility and no require of tooth mesh discretization into units. We input the quasi ellipsoid gear reconstruction model into simulation software, we complete tooth meshing simulation. Simulation transmission ratio during meshing period was obtained, compared with theoretical transmission ratio, the result inosculate preferably. The method using curve reconstruction realizes surface reconstruction, reduce simulation calculation enormously, so special gears simulation can be realized by minitype computer. The method provides a novel solution for special transmission 3D model simulation analysis and contact analysis.展开更多
This paper constructs a concentric ellipsoid torso-heart model by boundary element method and investigates the impacts of model structures on the cardiac magnetic fields generated by both equivalent primary source--a ...This paper constructs a concentric ellipsoid torso-heart model by boundary element method and investigates the impacts of model structures on the cardiac magnetic fields generated by both equivalent primary source--a current dipole and volume currents. Then by using the simulated magnetic fields based on torso-heart model as input, the cardiac current sources--an array of current dipoles by optimal constrained linear inverse method are constructed. Next, the current dipole array reconstruction considering boundaries is compared with that in an unbounded homogeneous medium. Furthermore, the influence of random noise on reconstruction is also considered and the reconstructing effect is judged by several reconstructing parameters.展开更多
The ordering configurations of a fluid of anisotropic ellipsoids under the confinement of two apposing impenetrable walls are studied by Monte Carlo simulations. The excess adsorption of the fluid on the walls with re...The ordering configurations of a fluid of anisotropic ellipsoids under the confinement of two apposing impenetrable walls are studied by Monte Carlo simulations. The excess adsorption of the fluid on the walls with respect to the aspect ratio has a maximum at the critical aspect ratio of 2.9 in high-density ellipsoid fluids, indicating an orientational ordering in the adjacent region of the walls, which is confirmed by probing into the density configurations and the orientational order parameter in the adjacent region of the walls for varying aspect ratios. In addition, the orientational order parameter in the bulk fluid at the same density is calculated, and it indicates an isotropic state as the bulk density is still below the bulk isotropic-to-nematic transition. Therefore, it can be concluded that the anisotropic ordering near the walls in the ellipsoid fluid that exhibits isotropic in the bulk is induced by the confinement effect of the walls.展开更多
The boundary value problem of deflections of vertical with ellipsoid boundary is studied in the paper. Based on spherical harmonic series, the ellipsoidal corrections for the boundary value problem are derived so that...The boundary value problem of deflections of vertical with ellipsoid boundary is studied in the paper. Based on spherical harmonic series, the ellipsoidal corrections for the boundary value problem are derived so that it can be well solved. In addition, an imitation arithmetic is given for examining the accuracies of solutions for the boundary value problem as well as its spherical approximation problem, and the computational results illustrate that the boundary value problem has higher accuracy than its spherical approximation problem if deflection of the vertical are measured on geoid.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.52275178)Fujian industry university cooperation project (Grant No.2020H6025)。
文摘Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,the influence of diamond nanoparticles(DNPs)on the tribological properties of lubricants is investigated through friction experiments.Additionally,the friction characteristics of lubricants regarding ellipsoidal particle shape are investigated using molecular dynamics(MD)simulations.The results show that DNPs can drastically lower the lubricant's friction coefficientμfrom 0.21 to 0.117.The shearing process reveals that as the aspect ratio(α)of the nanoparticles approaches 1.0,the friction performance improves,and wear on the wall diminishes.At the same time,the shape of the nanoparticles tends to be spherical.When 0.85≤α≤1.0,rolling is ellipsoidal particles'main form of motion,and the friction force changes according to a periodic sinusoidal law.In the range of 0.80≤α<0.85,ellipsoidal particles primarily exhibit sliding as the dominant movement mode.Asαdecreases within this range,the friction force progressively increases.The friction coefficientμcalculated through MD simulation is 0.128,which is consistent with the experimental data.
基金Project supported by the National Natural Science Foundation of China(Grant No.12175001)the Natural Science Research Key Project of the Education Department of Anhui Province of China(Grant No.KJ2021A0943)+3 种基金the Research Start-up Funding Project of High Level Talent of West Anhui University(Grant No.WGKQ2021048)an Open Project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes(Grant No.FMDI202106)the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2021-026)the Anhui Provincial Natural Science Foundation(Grant Nos.2108085MA18 and 2008085MA20)。
文摘A quantum steering ellipsoid(QSE)is a visual characterization for bipartite qubit systems,and it is also a novel avenue for describing and detecting quantum correlations.Herein,by using a QSE,we visualize and witness the first-order coherence(FOC),Bell nonlocality(BN)and purity under non-inertial frames.Also,the collective influences of the depolarizing channel and the non-coherence-generating channel(NCGC)on the FOC,BN and purity are investigated in the QSE formalism.The results reveal that the distance from the center of the QSE to the center of the Bloch sphere visualizes the FOC of a bipartite system,the lengths of the QSE semiaxis visualize the BN,and the QSE's shape and position dominate the purity of the system.One can capture the FOC,BN and purity via the shape and position of the QSE in the non-inertial frame.The depolarizing channel(the NCGC)gives rise to the shrinking and degradation(the periodical oscillation)of the QSE.One can use these traits to visually characterize and detect the FOC,BN and purity under the influence of external noise.Of particular note is that the condition for the QSE to achieve the center of the Bloch sphere cannot be influenced by the depolarizing channel and the NCGC.The characterization shows that the conditions for the disappearance of the FOC are invariant under the additional influences of the depolarizing channel and NCGC.
文摘We consider the so-called Thomson problem which refers to finding the equilibrium distribution of a finite number of mutually repelling point charges on the surface of a sphere, but for the case where the sphere is replaced by a spheroid or ellipsoid. To get started, we first consider the problem in two dimensions, with point charges on circles (for which the equilibrium distribution is intuitively obvious) and ellipses. We then generalize the approach to the three-dimensional case of an ellipsoid. The method we use is to begin with a random distribution of charges on the surface and allow each point charge to move tangentially to the surface due to the sum of all Coulomb forces it feels from the other charges. Deriving the proper equations of motion requires using a projection operator to project the total force on each point charge onto the tangent plane of the surface. The position vectors then evolve and find their final equilibrium distribution naturally. For the case of ellipses and ellipsoids or spheroids, we find that multiple distinct equilibria are possible for certain numbers of charges, depending on the starting conditions. We characterize these based on their total potential energies. Some of the equilibria found turn out to represent local minima in the potential energy landscape, while others represent the global minimum. We devise a method based on comparing the moment-of-inertia tensors of the final configurations to distinguish them from one another.
基金The National High Technology Research and Development Program of China(863 Program)(No.863-306-ZD13-03-6)the High Technology Research and Development Program of Dalian City(No.2005E21SF134)
文摘A novel modeling method which can restore the shape of the femoral head with collapse induced by ischemic necrosis is proposed. First, sequential tomograms of the hip are obtained from a CT scan; secondly, an accurate and automatic method is used to extract the profile of the acetabulum; thirdly, a hybrid method is utilized to gather fiducial marks on the acetabulum; fourthly, bulky error sampling points are removed. Finally, an ellipsoid fitting method is used to fit the ellipsoid model of the femoral head. Two male sufferers with different necrosis extents are chosen as experimental subjects for contrastive simulation. Fifty cases of different ages (from 25 to 79 years old) are utilized for statistical comparisons of matching errors. The prosthetic models highly resemble the primary shape of the femoral head in health. This new method provides not only a theoretical model for accurate operation position fixing in an orthopaedics clinic, but it is also an innovative practical means for the individual manufacture of artificial femoral heads.
文摘A novel ellipsoidal acoustic infinite element is proposed. It is based a new pressure representation, which can describe and solve the ellipsoidal acoustic field more exactly. The shape functions of this novel acoustic infinite element are similar to the (Burnett's) method, while the weight functions are defined as the product of the complex conjugates of the shaped functions and an additional weighting factor. The code of this method is cheap to generate as for 1-D element because only 1-D integral needs to be numerical. Coupling with the standard finite element, this method provides a capability for very efficiently modeling acoustic fields surrounding structures of virtually any practical shape. This novel method was deduced in brief and the conclusion was kept in detail. To test the feasibility of this novel method efficiently,in the examples the infinite elements were considered,excluding the finite elements relative. This novel ellipsoidal acoustic infinite element can deduce the analytic solution of an oscillating sphere. The example of a prolate spheroid shows that the novel infinite element is superior to the boundary element and other acoustic infinite elements. Analytical and numerical results of these examples show that this novel method is feasible.
基金Supported by the Major State Basic Research Development Program of China (2011CB201505), the National Natural Science Foundation of China (50976025) and the Key Proj ect.of Science and Technology of Henan Province (12B610012).
文摘Discrete element model was developed to simulate the ellipsoidal particles moving in the moving bed. Multi-element model was used to describe a ellipsoidal particle, the contact detection algorithm of ellipsoidal particle was developed, and both contact force and gravity force were considered in the models. The simulation results were validated by our experiment. Three algorithms for representing an ellipsoidal particle were compared in macro and micro aspects. The results show that there exists big difference in the microscopic parameters such as kinetic energy, rotational kinetic energy, deformation, contact force and collision number which leads to the difference of macroscopic parameters. The relative error in the discharge rate and tracer particle position is the largest between 3-tangent-element representation and experimental results. The flow pattern is similar for the 5-element and 3-intersection representations. The only difference is the discharge rate of 5-element representation is larger than the experimental value and that of the 3-intersection representation has the contrary result. Finally the 3-intersection- element reoresentation is chosen in the simulation due to less comouting time than that of the 5-element renresentation.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 59975022 and 50275034)
文摘The two-step hydro-bulge forming technique was proposed to manufacture the ellipsoidal shell with the length ratio of the long axis to the short axis larger than 1.4. A central tube was introduced into the first step of the hydro-bulge forming process to constrain the over growth of the short axis during bulging,and then the central tube was replaced with two polar plates in the second step of the hydro-bulge forming process to manufacture an integral ellipsoidal shell. It is shown that the central tube restricts the growth of the short axis and simultaneously reduces the shrunk tendency of the long axis. The wrinkling occurs due to the latitudinal compressive stress at the equator at the early stage of hydro-bulge forming. However,with the increase of internal pressure,the compressive stress areas gradually decrease and finally the tensile latitudinal stress occupies approximately the whole shell,thus the wrinkles are eliminated. A sound ellipsoidal shell with the axis length ratio of 1.8 is obtained after two-step hydro bulging.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11372141 and 11472138)the National Defense Pre-Research Foundation of China(Grant No.61426040201162604002)
文摘Acoustic characteristics of a pulse detonation engine(PDE) with and without an ellipsoidal reflector are numerically and experimentally investigated. A two-dimensional(2 D) non-splitting unstructured triangular mesh Euler solver based on the space-time conservation element and solution element(CE/SE) method is employed to simulate the flow field of a PDE.The numerical results clearly demonstrate the external flow field of the PDE. The effect of an ellipsoidal reflector on the flow field characteristic near the PDE exit is investigated. The formation process of reflected shock wave and reflected jet shock are reported in detail. An acoustic measurement system is established for the PDE acoustic testing. The experimental results show that the ellipsoidal reflector changes the sound waveform and directivity of PDE sound. The reflected shock wave and reflected jet shock result in two more positive pressure peaks in the sound waveform. The ellipsoidal reflector changes the directivity of PDE sound from 20 to 0. It is found that the peak sound pressure level(PSPL) and overall sound pressure level(OASPL) each obtain an increment when the PDE is installed with a reflector. The maximum relative increase ratio of PSPL and OASPL are obtained at the focus point F2, whose values are 6.1% and 6.84% respectively. The results of the duration of the PDE sound indicate that the reflecting and focusing wave generated by the reflector result in the increment of A duration and B duration before and near focus point F2. Results show that the ellipsoidal reflector has a great influence on the acoustic characteristic of PDE sound. The research is helpful for understanding the influence of an ellipsoidal reflector on the formation and propagation process of PDE sound.
文摘In recent years, the method of magnetic survey as one of the new techniques in geological and geophysical studies is known. In this study to determine the shape of the stress field of the two methods, Anisotropy of Magnetic Susceptibility (AMS) and paleostress?have been used. Paleomagnetism is the characteristics of magnetic rocks. Some issues in associated with the past places of continental and oceanic plates can be solved. AMS is one of the paleomagnetism methods that pay to measurement of parameters (which are reflector of the magnetic fabrics rocks). It is presenting an ellipsoid with three-axis perpendicular to each other that defines magnetic ellipsoid. In this regard, the number of 12 stations in different rocks (Jurassic to Quaternary) in the southern region of Ardebil sampling was conducted. In this connection, the study of magnetic fabrics has shown an elliptical magnetic susceptibility with the prolate shape. For the separation of paleostress phases in the Khalkhal area using the analysis of the paleostress based on the study of heterogeneous fault-slip data and sliding lineaments. Firstly, data were picked from 10 stations, and after their analysis, the elliptical shape (prolate) has been determinated. The shape of the ellipsoid, based on AMS and paleostress methods and their results show that in both methods the shape of the stress field is prolate.
基金The project supported in part by the National Natural Science Foundation of China(11671306)
文摘Let B2,p:= {z ∈ C2: |z1|2+ |z2|p< 1}(0 < p < 1). Then, B2,p(0 < p < 1) is a non-convex complex ellipsoid in C2 without smooth boundary. In this article, we establish a boundary Schwarz lemma at z0 ∈ ?B2,p for holomorphic self-mappings of the non-convex complex ellipsoid B2,p, where z0 is any smooth boundary point of B2,p.
基金supported by National Natural Science Foundation of China (Grant No. 51075168)National Basic Research Program of China (973 Program, Grant No. 2011CB706803)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA04Z149)
文摘The existing research of the motion optimization of multi-axis machine tools is mainly based on geometric and kinematic constraints, which aim at obtaining minimum-time trajectories and finding obstacle-free paths. In motion optimization, the stiffness characteristics of the whole machining system, including machine tool and cutter, are not considered. The paper presents a new method to establish a general stiffness model of multi-axis machining system. An analytical stiffness model is established by Jacobi and point transformation matrix method. Based on the stiffness model, feed-direction stiffness index is calculated by the intersection of force ellipsoid and the cutting feed direction at the cutter tip. The stiffness index can help analyze the stiffness performance of the whole machining system in the available workspace. Based on the analysis of the stiffness performance, multi-axis motion optimization along tool paths is accomplished by mixed programming using Matlab and Visual C++. The effectiveness of the motion optimization method is verified by the experimental research about the machining performance of a 7-axis 5-linkage machine tool. The proposed research showed that machining stability and production efficiency can be improved by multi-axis motion optimization based on the anisotropic force ellipsoid of the whole machining system.
文摘It is well known that the line of intersection of an ellipsoid and a plane is an ellipse. In this note simple formulas for the semi-axes and the center of the ellipse are given, involving only the semi-axes of the ellipsoid, the componentes of the unit normal vector of the plane and the distance of the plane from the center of coordinates. This topic is relatively common to study, but, as indicated in [1], a closed form solution to the general problem is actually very difficult to derive. This is attemped here. As applications problems are treated, which were posed in the internet [1,2], pertaining to satellite orbits in space and to planning radio-therapy treatment of eyes.
基金Funded by the National Natural Science Foundations of China(Nos.51478278 and 51408380)the Natural Science Foundation of Hebei Province(No.E2014210149)Higher Education Science and Technology Research Project of Hebei Province(No.ZD2016065)
文摘The interfacial transition zone (ITZ) between the aggregates and the bulk paste is the weakest zone of ordinary concrete, which largely determines its mechanical and transporting properties. However, a complete understanding and a quantitative modeling of ITZ are still lacking. Consequently, an integrated modeling and experimental study were conducted. First, the theoretical calculation model of the ITZ volume fraction about the rotary ellipsoidal aggregate particles was established based on the nearest surface function formula. Its calculation programs were written based on Visual Basic 6.0 language and achieved visualization and functionalization. Then, the influencing factors of ITZ volume fraction of the ellipsoidal aggregate particles and the overlapping degree between the ITZ were systematically analyzed. Finally, the calculation models of ITZ volume fraction on actual ellipsoidal aggregate were given, based on cobblestones or pebbles particles with naturally ellipsoidal shape. The results indicate that the calculation model proposed is highly reliable.
基金Supported by the National Natural Science Foundation of China(61070233)the Natural Science Foundation of Shaanxi Province,China(2011JM1006)
文摘Streamsurfaces in diffusion tensor fields are used to represent structures with pri- marily planar diffusion. So far, however, no effort has been made on the visualization of the anisotropy of diffusion on them, although this information is very important to identify the problematic regions of these structures. We propose two methods to display this anisotropy information. The first one employs a set of merging ellipsoids, which simultaneously character- ize the local tensor details - anisotropy - on them and portray the shape of the streamsurfaces. The weight between the streamsurfaces continuity and the discrete local tensors can be inter- actively adjusted by changing some given parameters. The second one generates a dense LIC (line integral convolution) texture of the two tangent eigenvector fields along the streamsurfaces firstly, and then blends in some color mapping indicating the anisotropy information. For high speed and high quality of texture images, we confine both the generation and the advection of the LIC texture in the image space. Merging ellipsoids method reveals the entire anisotropy information at discrete points by exploiting the geometric attribute of ellipsoids, and thus suits for local and detailed examination of the anisotropy; the texture-based method gives a global representation of the anisotropy on the whole streamsurfaces with texture and color attributes. To reveal the anisotropy information more efficiently, we integrate the two methods and use them at two different levels of details.
基金supported by the National Natural Science Foundation of China (Grant No. 40974004)the National High-Technology Research and Development Program of China (863 Program,Grant No. 2009AA121405)+1 种基金the Key Laboratory of Surveying and Mapping Technology on Island and Reef of NASMG,China (Grant No. 2011A01)the Key Laboratory of Advanced Engineering Surveying of NASMG,China (Grant No. TJES1101)
文摘Distance between the main land and island is so long that it is very difficult to precisely connect the height datum across the sea with the traditional method like the trigonometric leveling, or it is very expensive and takes long time to implement the height transfer with the geopotential technique. We combine the data of GPS surveying, astro-geodesy and EGM2008 to precisely connect the orthometric height across the sea with the improved astronomical leveling method in the paper. The Qiongzhou Strait is selected as the test area for the height connection over the sea. We precisely determine the geodetic latitudes, longitudes, heights and deflections of the vertical for four points on both sides across the strait. Modeled deflections of the vertical along the height connecting routes over the sea are determined with EGM2008 model based on the geodetic positions and heights of the sea segmentation points from DNSC08MSS model. Differences of the measured and modeled deflections of the vertical are calculated at four points on both sides and linearly change along the route. So the deflections of the vertical along the route over the sea can be improved by the linear interpolation model. The results are also in accord with those of trigonometirc levelings. The practical case shows that we can precisely connect the orthometric height across the Qiongzhou Strait to satisfy the requirement of order 3 leveling network of China. The method is very efficient to precisely connect the height datum across the sea along the route up to 80 km.
基金supported by National Natural Science Foundation of China (Grant No. 50905049)Heilongjiang Provincial International Cooperation Project of China (WB06A06)+1 种基金Heilongjiang Provincial Programs for Science and Technology Development of China (GC09A524)Heilongjiang Provincial Postdoctoral Science Foundation of China (LBH-Z09189)
文摘Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide technical support for special transmission 3D model simulation. Currently, theoretical calculation and experimental method are difficult to exactly solve special transmission contact analysis problem. How to reduce calculation and computer memories consume and meet calculation precision is key to resolve special transmission contact analysis problem. According to 3D model simulation and surface reconstruction of quasi ellipsoid gear is difficulty, this paper employes meshless local Petrov-Galerkin (MLPG) method. In order to reduce calculation and computer memories consume, we disperse tooth mesh into finite points--sparseness points cloud or grid mesh, and then we do interpolation reconstruction in some necessary place of the 3D surface model during analysis. Moving least square method (MLSM) is employed for tooth mesh interpolation reconstruction, there are some advantages to do interpolation by means of MLSM, such as high precision, good flexibility and no require of tooth mesh discretization into units. We input the quasi ellipsoid gear reconstruction model into simulation software, we complete tooth meshing simulation. Simulation transmission ratio during meshing period was obtained, compared with theoretical transmission ratio, the result inosculate preferably. The method using curve reconstruction realizes surface reconstruction, reduce simulation calculation enormously, so special gears simulation can be realized by minitype computer. The method provides a novel solution for special transmission 3D model simulation analysis and contact analysis.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2006CB601007)the National Natural Science Foundation of China(Grant No.10674006)the National High Technology Research and Development Program of China(Grant No.2007AA03Z238)
文摘This paper constructs a concentric ellipsoid torso-heart model by boundary element method and investigates the impacts of model structures on the cardiac magnetic fields generated by both equivalent primary source--a current dipole and volume currents. Then by using the simulated magnetic fields based on torso-heart model as input, the cardiac current sources--an array of current dipoles by optimal constrained linear inverse method are constructed. Next, the current dipole array reconstruction considering boundaries is compared with that in an unbounded homogeneous medium. Furthermore, the influence of random noise on reconstruction is also considered and the reconstructing effect is judged by several reconstructing parameters.
文摘The ordering configurations of a fluid of anisotropic ellipsoids under the confinement of two apposing impenetrable walls are studied by Monte Carlo simulations. The excess adsorption of the fluid on the walls with respect to the aspect ratio has a maximum at the critical aspect ratio of 2.9 in high-density ellipsoid fluids, indicating an orientational ordering in the adjacent region of the walls, which is confirmed by probing into the density configurations and the orientational order parameter in the adjacent region of the walls for varying aspect ratios. In addition, the orientational order parameter in the bulk fluid at the same density is calculated, and it indicates an isotropic state as the bulk density is still below the bulk isotropic-to-nematic transition. Therefore, it can be concluded that the anisotropic ordering near the walls in the ellipsoid fluid that exhibits isotropic in the bulk is induced by the confinement effect of the walls.
基金funded jointly by State's Key Project of Research and Development Plan(2016YFB0501702)National natural science fund of China(41274034)+1 种基金CAS/CAFEA international partnership for creative research teams(KZZD-EW-TZ-19)Beijing key laboratory of urban spatial information engineering (2016205)
文摘The boundary value problem of deflections of vertical with ellipsoid boundary is studied in the paper. Based on spherical harmonic series, the ellipsoidal corrections for the boundary value problem are derived so that it can be well solved. In addition, an imitation arithmetic is given for examining the accuracies of solutions for the boundary value problem as well as its spherical approximation problem, and the computational results illustrate that the boundary value problem has higher accuracy than its spherical approximation problem if deflection of the vertical are measured on geoid.