The warping may become an important factor for the precise transverse vibrations of curved beams.Thus,the first aim of this study is to specify the structural design parameters where the influence of cross-sectional w...The warping may become an important factor for the precise transverse vibrations of curved beams.Thus,the first aim of this study is to specify the structural design parameters where the influence of cross-sectional warping becomes great and the first-order shear deformation theory lacks the precision necessary.The outof-plane vibrations of the first-order shear deformation theory are compared with the warping-included vibrations as the curvature and/or thickness increase for symmetric and asymmetric transversely-functionally graded(TFG)curved beams.The second aim is to determine the influence of design parameters on the vibrations.The circular/exact elliptical beams are formed via curved mixed finite elements(MFEs)based on the exact curvature and length.The stress-free conditions are satisfied on three-dimensional(3D)constitutive equations.The variation of functionally graded(FG)material constituents is considered based on the power-law dependence.The cross-sectional warping deformations are defined over a displacement-type FE formulation.The warping-included MFEs(W-MFEs)provide satisfactory 3D structural characteristics with smaller degrees of freedom(DOFs)compared with the brick FEs.The Newmark method is used for the forced vibrations.展开更多
Elliptical airy vortex beams(EAVBs) can spontaneously form easily identifiable topological charge focal spots. They are used for topological charge detection of vortex beams because they have the abruptly autofocusing...Elliptical airy vortex beams(EAVBs) can spontaneously form easily identifiable topological charge focal spots. They are used for topological charge detection of vortex beams because they have the abruptly autofocusing properties of circular airy vortex beams and exhibit unique propagation characteristics. We study the use of the dynamic phase and Pancharatnam–Berry phase principles for generation and modulation of EAVBs by designing complex-amplitude metasurface and phase-only metasurface, at an operating wavelength of 1500 nm. It is found that the focusing pattern of EAVBs in the autofocusing plane splits into |m| + 1 tilted bright spots from the original ring, and the tilted direction is related to the sign of the topological charge number m. Due to the advantages of ultra-thin, ultra-light, and small size of the metasurface, our designed metasurface device has potential applications in improving the channel capacity based on orbital angular momentum communication, information coding, and particle capture compared to spatial light modulation systems that generate EAVBs.展开更多
The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs ha...The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs has not been completely understood. The objective of this study was to investigate the penetration performance of ECOPs into concrete targets using a theoretical method. A general geometric model of ECOPs was introduced, and closed-form penetration equations were derived according to the dynamic cavity-expansion theory. The model was validated by comparing the predicted penetration depths with test data, and the maximum deviation was 15.8%. The increment in the penetration depth of the ECOP was evaluated using the proposed model, and the effect of the majoreminor axis ratio on the increment was examined. Additionally, the mechanism of the penetration-depth increment was investigated with respect to the caliber radius head, axial stress, and resistance.展开更多
In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, ...In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas.展开更多
A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigate...A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.展开更多
The bending and free vibrational behaviors of functionally graded(FG)cylindrical beams with radially and axially varying material inhomogeneities are investigated.Based on a high-order cylindrical beam model,where the...The bending and free vibrational behaviors of functionally graded(FG)cylindrical beams with radially and axially varying material inhomogeneities are investigated.Based on a high-order cylindrical beam model,where the shear deformation and rotary inertia are both considered,the two coupled governing differential motion equations for the deflection and rotation are established.The analytical bending solutions for various boundary conditions are derived.In the vibrational analysis of FG cylindrical beams,the two governing equations are firstly changed to a single equation by means of an auxiliary function,and then the vibration mode is expanded into shifted Chebyshev polynomials.Numerical examples are given to investigate the effects of the material gradient indices on the deflections,the stress distributions,and the eigenfrequencies of the cylindrical beams,respectively.By comparing the obtained numerical results with those obtained by the three-dimensional(3D)elasticity theory and the Timoshenko beam theory,the effectiveness of the present approach is verified.展开更多
In this paper, a new kind of light beam called off-axial elliptical cosine-Gaussian beam (ECosGBs) is defined by using the tensor method. An analytical propagation expression for the ECosGBs passing through axially ...In this paper, a new kind of light beam called off-axial elliptical cosine-Gaussian beam (ECosGBs) is defined by using the tensor method. An analytical propagation expression for the ECosGBs passing through axially nonsymmetrical optical systems is derived by using vector integration. The intensity distributions of ECosGBs on the input plane, on the output plane with the equivalent Fresnel number being equal to 0.1 and on the focal plane are respectively illustrated for the propagation properties. The results indicate that an ECosGB is eventually transformed into an elliptical cosh- Gaussian beam. In other words, ECosGBs and cosh-Gaussian beams act in a reciprocal manner after propagation.展开更多
Diffraction-free vectorial elliptic hollow beams(vEHBs)are generated by an optical system composed of a short elliptic hollow fiber(EHF)and an axicon.Each beam has a closed elliptic annular intensity profile and space...Diffraction-free vectorial elliptic hollow beams(vEHBs)are generated by an optical system composed of a short elliptic hollow fiber(EHF)and an axicon.Each beam has a closed elliptic annular intensity profile and space-varying polarization states in its diffraction-free distance of more than 1 m.The generated beams have a counter-clockwise or clockwise periodically-rotated inhomogeneous polarization.And the spin angular momentum(SAM)of the vEHBs is 1ħor-1ħwhich is consistent with the type of dual-mode in the EHF and the periodic polarization rotations of the vEHBs.The vEHBs have potential applications in optically trapping and micromanipulating the micro-or nano-particles,quantum information transmission,and Bose-Einstein condensates,etc.展开更多
The irradiance of an elliptic Gaussian beam that is high enough to excite high-order nonlinear refraction effect is used to calculate the normalized on-axis transmittance function in the z-scan technique by introducin...The irradiance of an elliptic Gaussian beam that is high enough to excite high-order nonlinear refraction effect is used to calculate the normalized on-axis transmittance function in the z-scan technique by introducing complex beam parameters which make the calculation simpler. The transmittance formula is applied to the first-, first two-, and first three-order nonlinearities. Numerical evaluation shows that the symmetry no longer holds when using an elliptic Gaussian beam instead of a circular Gaussian beam. A distortion is observed in the central part of the curve, which decreases as ellipticity increases. Moreover, the variation of the normalized peak-valley difference decreases as ellipticity decreases.展开更多
By applying the ABCD matrix method, we report the propagating properties of the rotating elliptical Gaussian beams(REGBs) from the right-handed material(RHM) to the left-handed material(LHM). Based on the propag...By applying the ABCD matrix method, we report the propagating properties of the rotating elliptical Gaussian beams(REGBs) from the right-handed material(RHM) to the left-handed material(LHM). Based on the propagation equation, we obtain the intensity distributions of the REGBs during the propagation. It is found that the rotating direction of the REGBs is opposite in the RHM and the LHM, and the rotation angles tend to be π /2 as the propagation distance is long enough.Then we analyze the relationship between the refractive index and the rotating velocity. Furthermore, the energy flow and the angular momentum(AM) of the REGBs which can rotate are also obtained.展开更多
In order to give a true reflection of the spatial structure of woven fabric, a circular mathematical model is established based on the Peirce's model and the principle of the coordinate transformation. The circular m...In order to give a true reflection of the spatial structure of woven fabric, a circular mathematical model is established based on the Peirce's model and the principle of the coordinate transformation. The circular model uses arcs and tangent lines as the yarn flexion shape and selects the circle as the yarn cross-section. Then, a new elliptical cross-section mathematical model is rapidly built by the Jaeobian transformation of the circular model. The Matiab software is used for the 3D simulation. It is shown that 3D simulations of woven fabrics with different weft and warp yarn counts, weft and warp densities, structure phases, weaves and flattening coefficients are successfully realized by Matiab basing on the elliptical mathematical model.展开更多
The propagation and transformation of an elliptic Gaussian optical beam(EGB) passing through a Kerr-law nonlinear conical graded-index rod lens are presented.In the rod lens, the EGB is treated as two dependent optica...The propagation and transformation of an elliptic Gaussian optical beam(EGB) passing through a Kerr-law nonlinear conical graded-index rod lens are presented.In the rod lens, the EGB is treated as two dependent optical beams.The dimensionless beam-width parameters and the inverses of the curvature radii for the wavefront of the two beams are given semi-analytically,and the transformations of the EGB with the rod lens are derived by use of the ABCD law of Gaussian optical beam.展开更多
The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account t...The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account the transverse, axial and rotary inertia effects. Assuming a traveling wave solution, the nonlinear partial differential equations are then transformed into ordinary differential equations. Qualitative analysis indicates that the system can have either a homoclinic orbit or a heteroclinic orbit, depending on whether the rotary inertia effect is taken into account. Furthermore, exact periodic solutions of the nonlinear wave equations are obtained by means of the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function m→1 in the degenerate case, either a solitary wave solution or a shock wave solution can be obtained.展开更多
For the static analysis of the sinking stage curved beam, a finite difference model was presented based on the proposed revised Vlasov equations. First, revised Vlasov equations for thin-walled curved beams with close...For the static analysis of the sinking stage curved beam, a finite difference model was presented based on the proposed revised Vlasov equations. First, revised Vlasov equations for thin-walled curved beams with closed sections were deduced considering the shear strain on the mid-surface of the cross-section. Then, the finite difference formulation of revised Vlasov equations was implemented with the parabolic interpolation based on Taylor series. At last, the finite difference model was built by substituting geometry and boundary conditions of the sinking stage curved beam into the finite difference formulation. The validity of present work is confirmed by the published literature and ANSYS simulation results. It can be concluded that revised Vlasov equations are more accurate than the original one in the analysis of thin-walled beams with closed sections, and that present finite difference model is applicable in the evaluation of the sinking stage curved beam.展开更多
Elegant Ince-Gaussian beams, which are the exact solutions of the paraxial wave equation in a quadratic-index medium, are derived in elliptical coordinates. These kinds of beams are the alternative form of standard In...Elegant Ince-Gaussian beams, which are the exact solutions of the paraxial wave equation in a quadratic-index medium, are derived in elliptical coordinates. These kinds of beams are the alternative form of standard Ince-Gaussian beams and they display better symmetry between the ]nce-polynomials and the Gaussian function in mathematics. The transverse intensity distribution and the phase of the elegant Ince Gaussian beams are discussed.展开更多
This paper studies analytically and numerically the dynamics of two-dimensional elliptical Gaussian solitons in a "double-self-focusing" synthetic nonlocal media featuring elliptical and circular Gaussian response w...This paper studies analytically and numerically the dynamics of two-dimensional elliptical Gaussian solitons in a "double-self-focusing" synthetic nonlocal media featuring elliptical and circular Gaussian response with different degrees of nonlocality. Based on the variational approach, it obtains the approximately analytical solution of such Gaussian elliptical solitons. It also computes the stability of the solitons by numerical simulations.展开更多
Based on the Timoshenko beam theory, the finite-deflection and the axial inertia are taken into account, and the nonlinear partial differential equations for flexural waves in a beam are derived. Using the traveling w...Based on the Timoshenko beam theory, the finite-deflection and the axial inertia are taken into account, and the nonlinear partial differential equations for flexural waves in a beam are derived. Using the traveling wave method and integration skills, the nonlinear partial differential equations can be converted into an ordinary differential equation. The qualitative analysis indicates that the corresponding dynamic system has a heteroclinic orbit under a certain condition. An exact periodic solution of the nonlinear wave equation is obtained using the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function tends to one in the degenerate case, a shock wave solution is given. The small perturbations are further introduced, arising from the damping and the external load to an original Hamilton system, and the threshold condition of the existence of the transverse heteroclinic point is obtained using Melnikov's method. It is shown that the perturbed system has a chaotic property under the Smale horseshoe transform.展开更多
The number of wireless electronic gadgets used in mobile communication, vehicle collision avoidance system, compact radars, etc. is extremely increasing at a rapid rate. Thus, the characteristics of the antennas invol...The number of wireless electronic gadgets used in mobile communication, vehicle collision avoidance system, compact radars, etc. is extremely increasing at a rapid rate. Thus, the characteristics of the antennas involved in these gadgets are to be designed very stringently so as to avoid interferences & coupling and to improve compatibility, susceptibility, etc. Compact smart antenna with improved performance is highly essential to meet this challenging scenario. Mutual coupling between various elements of an array is one of the main factors which can be considered for improvement of performance of the antenna. Influence of mutual coupling on performance of the antenna is considered in this paper and various techniques to minimize this effect are presented. Effect of mutual coupling on radiation characteristics of the antenna can be compensated employing various methods like Conventional Mutual Impedance (CMI), Receiving Mutual Impedance (RMI). Analysis is presented as comparison between the two methods for different number of elements in the array. Analysis is also presented for different geometries of the array like circular and elliptical for improved performance. The results show performance improvement in the proposed array for parameters like SNR and Speed of convergence.展开更多
基金Project supported by the Scientific and Technological Research Council of Turkey(TUBITAK)via 2209-A Programme。
文摘The warping may become an important factor for the precise transverse vibrations of curved beams.Thus,the first aim of this study is to specify the structural design parameters where the influence of cross-sectional warping becomes great and the first-order shear deformation theory lacks the precision necessary.The outof-plane vibrations of the first-order shear deformation theory are compared with the warping-included vibrations as the curvature and/or thickness increase for symmetric and asymmetric transversely-functionally graded(TFG)curved beams.The second aim is to determine the influence of design parameters on the vibrations.The circular/exact elliptical beams are formed via curved mixed finite elements(MFEs)based on the exact curvature and length.The stress-free conditions are satisfied on three-dimensional(3D)constitutive equations.The variation of functionally graded(FG)material constituents is considered based on the power-law dependence.The cross-sectional warping deformations are defined over a displacement-type FE formulation.The warping-included MFEs(W-MFEs)provide satisfactory 3D structural characteristics with smaller degrees of freedom(DOFs)compared with the brick FEs.The Newmark method is used for the forced vibrations.
基金supported by the National Natural Science Foundation of China (Grant No. 61975185)the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY19F030004 and LY20F050002)。
文摘Elliptical airy vortex beams(EAVBs) can spontaneously form easily identifiable topological charge focal spots. They are used for topological charge detection of vortex beams because they have the abruptly autofocusing properties of circular airy vortex beams and exhibit unique propagation characteristics. We study the use of the dynamic phase and Pancharatnam–Berry phase principles for generation and modulation of EAVBs by designing complex-amplitude metasurface and phase-only metasurface, at an operating wavelength of 1500 nm. It is found that the focusing pattern of EAVBs in the autofocusing plane splits into |m| + 1 tilted bright spots from the original ring, and the tilted direction is related to the sign of the topological charge number m. Due to the advantages of ultra-thin, ultra-light, and small size of the metasurface, our designed metasurface device has potential applications in improving the channel capacity based on orbital angular momentum communication, information coding, and particle capture compared to spatial light modulation systems that generate EAVBs.
基金supported by the National Natural Science Foundation of China (Nos. 11772269, 11802248, and 11872318)。
文摘The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs has not been completely understood. The objective of this study was to investigate the penetration performance of ECOPs into concrete targets using a theoretical method. A general geometric model of ECOPs was introduced, and closed-form penetration equations were derived according to the dynamic cavity-expansion theory. The model was validated by comparing the predicted penetration depths with test data, and the maximum deviation was 15.8%. The increment in the penetration depth of the ECOP was evaluated using the proposed model, and the effect of the majoreminor axis ratio on the increment was examined. Additionally, the mechanism of the penetration-depth increment was investigated with respect to the caliber radius head, axial stress, and resistance.
基金Sponsored by the Subsidization Plan for Outstanding Young Teacher of Ministry of Education
文摘In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas.
文摘A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.
基金Project supported by the Natural Science Foundation of Guangdong Province of China(No.2018A030313258)。
文摘The bending and free vibrational behaviors of functionally graded(FG)cylindrical beams with radially and axially varying material inhomogeneities are investigated.Based on a high-order cylindrical beam model,where the shear deformation and rotary inertia are both considered,the two coupled governing differential motion equations for the deflection and rotation are established.The analytical bending solutions for various boundary conditions are derived.In the vibrational analysis of FG cylindrical beams,the two governing equations are firstly changed to a single equation by means of an auxiliary function,and then the vibration mode is expanded into shifted Chebyshev polynomials.Numerical examples are given to investigate the effects of the material gradient indices on the deflections,the stress distributions,and the eigenfrequencies of the cylindrical beams,respectively.By comparing the obtained numerical results with those obtained by the three-dimensional(3D)elasticity theory and the Timoshenko beam theory,the effectiveness of the present approach is verified.
文摘In this paper, a new kind of light beam called off-axial elliptical cosine-Gaussian beam (ECosGBs) is defined by using the tensor method. An analytical propagation expression for the ECosGBs passing through axially nonsymmetrical optical systems is derived by using vector integration. The intensity distributions of ECosGBs on the input plane, on the output plane with the equivalent Fresnel number being equal to 0.1 and on the focal plane are respectively illustrated for the propagation properties. The results indicate that an ECosGB is eventually transformed into an elliptical cosh- Gaussian beam. In other words, ECosGBs and cosh-Gaussian beams act in a reciprocal manner after propagation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304093 and 11274114)the Hubei Provincial Natural Science Foundation,China(Grant No.2018CFB320)the Academic Discipline Project of Hubei Normal University,China(Grant Nos.2014F012 and 2014F013).
文摘Diffraction-free vectorial elliptic hollow beams(vEHBs)are generated by an optical system composed of a short elliptic hollow fiber(EHF)and an axicon.Each beam has a closed elliptic annular intensity profile and space-varying polarization states in its diffraction-free distance of more than 1 m.The generated beams have a counter-clockwise or clockwise periodically-rotated inhomogeneous polarization.And the spin angular momentum(SAM)of the vEHBs is 1ħor-1ħwhich is consistent with the type of dual-mode in the EHF and the periodic polarization rotations of the vEHBs.The vEHBs have potential applications in optically trapping and micromanipulating the micro-or nano-particles,quantum information transmission,and Bose-Einstein condensates,etc.
基金Project supported by the National Natural Science Foundation of China (Grant No.10574011)
文摘The irradiance of an elliptic Gaussian beam that is high enough to excite high-order nonlinear refraction effect is used to calculate the normalized on-axis transmittance function in the z-scan technique by introducing complex beam parameters which make the calculation simpler. The transmittance formula is applied to the first-, first two-, and first three-order nonlinearities. Numerical evaluation shows that the symmetry no longer holds when using an elliptic Gaussian beam instead of a circular Gaussian beam. A distortion is observed in the central part of the curve, which decreases as ellipticity increases. Moreover, the variation of the normalized peak-valley difference decreases as ellipticity decreases.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374108 and 10904041)the Foundation for the Author of Guangdong Provincial Excellent Doctoral Dissertation(Grant No.SYBZZXM201227)+4 种基金the Foundation of Cultivating Outstanding Young Scholars("ThousandHundredTen"Program)of Guangdong Province in Chinathe Fund from the CAS Key Laboratory of Geospace EnvironmentUniversity of Science and Technology of China
文摘By applying the ABCD matrix method, we report the propagating properties of the rotating elliptical Gaussian beams(REGBs) from the right-handed material(RHM) to the left-handed material(LHM). Based on the propagation equation, we obtain the intensity distributions of the REGBs during the propagation. It is found that the rotating direction of the REGBs is opposite in the RHM and the LHM, and the rotation angles tend to be π /2 as the propagation distance is long enough.Then we analyze the relationship between the refractive index and the rotating velocity. Furthermore, the energy flow and the angular momentum(AM) of the REGBs which can rotate are also obtained.
文摘In order to give a true reflection of the spatial structure of woven fabric, a circular mathematical model is established based on the Peirce's model and the principle of the coordinate transformation. The circular model uses arcs and tangent lines as the yarn flexion shape and selects the circle as the yarn cross-section. Then, a new elliptical cross-section mathematical model is rapidly built by the Jaeobian transformation of the circular model. The Matiab software is used for the 3D simulation. It is shown that 3D simulations of woven fabrics with different weft and warp yarn counts, weft and warp densities, structure phases, weaves and flattening coefficients are successfully realized by Matiab basing on the elliptical mathematical model.
文摘The propagation and transformation of an elliptic Gaussian optical beam(EGB) passing through a Kerr-law nonlinear conical graded-index rod lens are presented.In the rod lens, the EGB is treated as two dependent optical beams.The dimensionless beam-width parameters and the inverses of the curvature radii for the wavefront of the two beams are given semi-analytically,and the transformations of the EGB with the rod lens are derived by use of the ABCD law of Gaussian optical beam.
基金supported by the National Natural Science Foundation of China(Nos.10772129 and 10702047).
文摘The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account the transverse, axial and rotary inertia effects. Assuming a traveling wave solution, the nonlinear partial differential equations are then transformed into ordinary differential equations. Qualitative analysis indicates that the system can have either a homoclinic orbit or a heteroclinic orbit, depending on whether the rotary inertia effect is taken into account. Furthermore, exact periodic solutions of the nonlinear wave equations are obtained by means of the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function m→1 in the degenerate case, either a solitary wave solution or a shock wave solution can be obtained.
基金Project(IRT1292)supported by Fund for Changjiang Scholars and Innovative Research Team in University(PCSIRT)China+2 种基金Project(51475456)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education InstitutionsChina
文摘For the static analysis of the sinking stage curved beam, a finite difference model was presented based on the proposed revised Vlasov equations. First, revised Vlasov equations for thin-walled curved beams with closed sections were deduced considering the shear strain on the mid-surface of the cross-section. Then, the finite difference formulation of revised Vlasov equations was implemented with the parabolic interpolation based on Taylor series. At last, the finite difference model was built by substituting geometry and boundary conditions of the sinking stage curved beam into the finite difference formulation. The validity of present work is confirmed by the published literature and ANSYS simulation results. It can be concluded that revised Vlasov equations are more accurate than the original one in the analysis of thin-walled beams with closed sections, and that present finite difference model is applicable in the evaluation of the sinking stage curved beam.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10904041 and 10674050)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20094407110008)the Specialized Research Fund for Growing Seedlings of the Higher Education in Guangdong Province,China (Grant No.C10087)
文摘Elegant Ince-Gaussian beams, which are the exact solutions of the paraxial wave equation in a quadratic-index medium, are derived in elliptical coordinates. These kinds of beams are the alternative form of standard Ince-Gaussian beams and they display better symmetry between the ]nce-polynomials and the Gaussian function in mathematics. The transverse intensity distribution and the phase of the elegant Ince Gaussian beams are discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60808002)the Shanghai Leading Academic Discipline Program,China (Grant No. S30105)
文摘This paper studies analytically and numerically the dynamics of two-dimensional elliptical Gaussian solitons in a "double-self-focusing" synthetic nonlocal media featuring elliptical and circular Gaussian response with different degrees of nonlocality. Based on the variational approach, it obtains the approximately analytical solution of such Gaussian elliptical solitons. It also computes the stability of the solitons by numerical simulations.
基金Project supported by the National Natural Science Foundation of China (No. 10772129)
文摘Based on the Timoshenko beam theory, the finite-deflection and the axial inertia are taken into account, and the nonlinear partial differential equations for flexural waves in a beam are derived. Using the traveling wave method and integration skills, the nonlinear partial differential equations can be converted into an ordinary differential equation. The qualitative analysis indicates that the corresponding dynamic system has a heteroclinic orbit under a certain condition. An exact periodic solution of the nonlinear wave equation is obtained using the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function tends to one in the degenerate case, a shock wave solution is given. The small perturbations are further introduced, arising from the damping and the external load to an original Hamilton system, and the threshold condition of the existence of the transverse heteroclinic point is obtained using Melnikov's method. It is shown that the perturbed system has a chaotic property under the Smale horseshoe transform.
文摘The number of wireless electronic gadgets used in mobile communication, vehicle collision avoidance system, compact radars, etc. is extremely increasing at a rapid rate. Thus, the characteristics of the antennas involved in these gadgets are to be designed very stringently so as to avoid interferences & coupling and to improve compatibility, susceptibility, etc. Compact smart antenna with improved performance is highly essential to meet this challenging scenario. Mutual coupling between various elements of an array is one of the main factors which can be considered for improvement of performance of the antenna. Influence of mutual coupling on performance of the antenna is considered in this paper and various techniques to minimize this effect are presented. Effect of mutual coupling on radiation characteristics of the antenna can be compensated employing various methods like Conventional Mutual Impedance (CMI), Receiving Mutual Impedance (RMI). Analysis is presented as comparison between the two methods for different number of elements in the array. Analysis is also presented for different geometries of the array like circular and elliptical for improved performance. The results show performance improvement in the proposed array for parameters like SNR and Speed of convergence.