期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Textural and compositional zoning in plagioclase phenocrysts:implications for magma chamber processes in the Emeishan large Igneous Province,SW China
1
作者 Qi Chen Song-Yue Yu +2 位作者 Lie-Meng Chen Sheng-Hua Zhou Jian Kang 《Acta Geochimica》 EI CAS CSCD 2023年第3期453-470,共18页
Textural and compositional zoning within plagioclase phenocrysts records the magma chamber processes,such as magma differentiation,magma recharge and mixing,and crustal contamination.The plagioclase phenocrysts in the... Textural and compositional zoning within plagioclase phenocrysts records the magma chamber processes,such as magma differentiation,magma recharge and mixing,and crustal contamination.The plagioclase phenocrysts in the Daqiao and Qiaojia plagioclase-phyric basalts from the Emeishan Large Igneous Province(LIP)show complex textural and compositional zoning patterns,e.g.,normal,reverse,oscillatory,and patchy zoning patterns.Most plagioclase phenocrysts exhibit a core–rim normal zoning pattern(Pl-A)with euhedral high-An cores(An=76–78%,in mole fraction)and low-An rims(An=68–72%),indicative of the crystal regrowth processes caused by recharge of relatively evolved magmas after the formation of high-An cores.Some phenocrysts have a core–rim reverse zoning pattern(Pl-B)with irregular ovaloid cores,characterized by extremely low An(60–61 mol%)and Ba(84–88 ppm)contents and extremely high87Sr/86Sr ratios(0.7120–0.7130).The rims of the Pl-B have relatively high An(69–72%),Ba(~160 ppm)contents,and low87Sr/86Sri(~0.7056).These Pl-B plagioclase phenocrysts preserve the information about the interaction between the crustal xenocrysts and the transporting magmas.Some plagioclase phenocrysts show a core–mantle–rim oscillatory zoning pattern(Pl-C)with multiple oscillations of An(70–80%),Ba(88–147ppm)from core to rim,revealing replenishment and mixing of multiple batches of basaltic melts with diverse compositions.87Sr/86Sr ratios of the Pl-C do not vary significantly(0.7050–0.7054).A small portion of phenocrysts has patchy patterns in the cores(Pl-D),where the low-An patches(72–75%)in form of elliptical or irregular elongated shapes were enclosed by the high-An domains(80–87%).These features can be attributed to crystal dissolution and regrowth processes during the reaction between earlyformed low-Cumulates and recharged hot primitive melts.The cores,mantles,and rims of different types of plagioclase phenocrysts(except the core of Pl-B)commonly display nearly constant Sr isotopic compositions,implying insignificant wall-rock assimilation at shallow-level magma reservoir(s)during the growth of these plagioclase phenocrysts.In conclusion,the massive crystallization of plagioclase in the late stage was an important controlling factor for the formation of iron-rich basalts in the Emeishan LIP. 展开更多
关键词 emeishan large igneous province Plagioclase-phyric basalt Compositional zoning Plagioclase phenocryst Magma replenishment
下载PDF
Chemostratigraphy of Flood Basalts in the Garze-Litang Region and Zongza Block: Implications for Western Extension of the Emeishan Large Igneous Province, SW China 被引量:18
2
作者 XIAOLong XUYigang +2 位作者 XUJifeng HEBin PirajnoFRANCO 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第1期61-67,共7页
The Late Permian Emeishan Large Igneous Province (ELIP) is commonly regarded as being located in the western part of the Yangtze craton, SW China, with an asymmetrical shape and a small area. This area, however, is ju... The Late Permian Emeishan Large Igneous Province (ELIP) is commonly regarded as being located in the western part of the Yangtze craton, SW China, with an asymmetrical shape and a small area. This area, however, is just a maximum estimation because some parts of the ELIP were not recognized or dismembered and destroyed during the Triassic to Cenozoic tectonism. In this paper, the chemostratigraphical data of the Zongza block, the Garze-Litang belt and the Songpan-Garze block suggest that the Late Permian basalts in these areas have remarkable similarities to the ELIP basalts in petrography and geochemistry. Flood basalts in the Sanjiangkou area are composed of the lower part of the low-Ti (LT) tholeiite and the upper part of the high-Ti (HT) tholeiite, which is the same as the flood basalts on the western margin of the Yangtze craton. Flood basalts in the Zongza and Songpan-Garze areas, which are far from the Yangtze craton, consist of HT tholeiite only. This is the same as the flood basalts within the Yangtze craton. Therefore we argue that these contemporary basalts all originated from the Emeishan mantle plume, and the ELIP could have a significant westward extension with an outcropped area of over 500,000 km2. This new scenario shows that the LT tholeiite occurs on the western margin of the Yangtze craton, while the HT tholeiite overlying the LT basalts occupies the whole area of the ELIP. 展开更多
关键词 emeishan large igneous province flood basalts CHEMOSTRATIGRAPHY Yangtze craton Garze-Litang Zongza block
下载PDF
Contrasting oxidation states of low-Ti and high-Ti magmas control Ni-Cu sulfide and Fe-Ti oxide mineralization in Emeishan Large Igneous Province 被引量:2
3
作者 Yonghua Cao Christina Yan Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第6期41-58,共18页
Magmatic Ni-Cu-(PGE) sulfide and Fe-Ti oxide deposits in plume-related large igneous provinces(LIPs)are commonly related to low-Ti and high-Ti series magmas, respectively, but the major factors that control such a rel... Magmatic Ni-Cu-(PGE) sulfide and Fe-Ti oxide deposits in plume-related large igneous provinces(LIPs)are commonly related to low-Ti and high-Ti series magmas, respectively, but the major factors that control such a relationship of metallogenic types and magma compositions are unclear. Magma fOcontrols sulfur status and relative timing of Fe-Ti oxide saturation in mafic magmas, which may help clarify this issue. Taking the Emeishan LIP as a case, we calculated the magma fOof the high-Ti and low-Ti picrites based on the olivine-spinel oxygen barometer, and the partitioning of V in olivine. The obtained fOof the high-Ti series magma(FMQ + 1.1 to FMQ + 2.6) is higher than that of the low-Ti series magma(FMQ-0.5to FMQ + 0.5). The magma fOof the high-Ti and low-Ti picrites containing Fo > 90 olivine reveals that the mantle source of the high-Ti series is likely more oxidized than that of the low-Ti series. The results using the ’lambda REE’ approach show that the high-Ti series may have been derived from relatively oxidized mantle with garnet pyroxenite component. The S contents at sulfide saturation(SCSS) of the two series magmas were calculated based on liquid compositions obtained from the alpha Melts modeling, and the results show that the low-Ti series magma could easily attain the sulfide saturation as it has low fOwith S being dominantly as S. In contrast, the oxidized high-Ti series magma is difficult to attain the sulfide saturation, but could crystallize Fe-Ti oxides at magma MgO content of ~7.0 wt.%. Thus, contrasting magma fOof low-Ti and high-Ti series in plume-related LIPs may play an important role in producing two different styles of metallogeny. 展开更多
关键词 emeishan large igneous province Mantle plume High-Ti and low-Ti series magma Magma oxygen fugacity Magmatic Fe-Ti oxide deposits Magmatic Ni-Cu-(PGE)deposits
下载PDF
Crust-derived felsic magmatism in the Emeishan large igneous Province:New evidence from zircon U-Pb-Hf-O isotope from the Yangtze Block,China 被引量:2
4
作者 Hao Zou Cheng-Hui Hu +7 位作者 M.Santosh Hai-Feng Chen Chang-Cheng Huang Xin-Wei Chen Hong-Kui Li Xin Jin Li-Ming Yu Min Li 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第3期139-155,共17页
Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province(ELIP),southwestern China.Most of the granitic ro... Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province(ELIP),southwestern China.Most of the granitic rocks in the ELIP were derived by differentiation of basaltic magmas with a mantle connection,and crustal magmas have rarely been studied.Here we investigate a suite of mafic dykes and Ⅰ-type granites that yield zircon U-Pb emplacement ages of 259.9±1.2 Ma and 259.3±1.3 Ma,respectively.The εHf(t)values of zircon from the DZ mafic dyke are–0.3 to 9.4,and their corresponding TDM1 values are in the range of 919–523 Ma.The εHf(t)values of zircon from the DSC Ⅰ-type granite are between–1 and 3,with TDM1 values showing a range of 938–782 Ma.We also present zircon O isotope data on crust-derived felsic intrusions from the ELIP for the first time.The δ18O values of zircon from the DSC Ⅰ-type granite ranges from 4.87‰to 7.5‰.The field,petrologic,geochemical and isotopic data from our study lead to the following salient findings.(i)The geochronological study of mafic and felsic intrusive rocks in the ELIP shows that the ages of mafic and felsic magmatism are similar.(ii)The DZ mafic dyke and high-Ti basalts have the same source,i.e.,the Emeishan mantle plume.The mafic dyke formed from magmas sourced at the transitional depth between from garnet-lherzolite and spinel-lherzolite,with low degree partial melting(<10%).(iii)The Hf-O isotope data suggest that the DSC Ⅰ-type granite was formed by partial melting of Neoproterozoic juvenile crust and was contaminated by minor volumes of chemically weathered ancient crustal material.(iv)The heat source leading to the formation of the crust-derived felsic rocks in of the ELIP is considered to be mafic–ultramafic magmas generated by a mantle plume,which partially melted the overlying crust,generating the felsic magma. 展开更多
关键词 emeishan large igneous province Mafic and felsic magmatism Zircon U-Pb-Hf-O isotopes Crustal partial melting Mantle plume
下载PDF
Newly Discovered Fluvial-Lacustrine Sediments in the Western Yangtze Block and their Geological Significance for the Emeishan Large Igneous Province 被引量:2
5
作者 MABI Awei ZHANG Mingchun +3 位作者 YANG Zhengxi LI Yanlong WEN Dengkui LIU Xuyang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期741-742,共2页
Objective The Emeishan large igneous province (ELIP) in SW China is the only one large igneous province in China recognized by international geologists. Previous studies of ELIP over past two decades indicate that ... Objective The Emeishan large igneous province (ELIP) in SW China is the only one large igneous province in China recognized by international geologists. Previous studies of ELIP over past two decades indicate that the ELIP age, duration, scale and generation mechanism are still controversial. Among those scientific topics, some scholars suggest that ELIP is an example of up-doming prior to LIP formation, which was evidenced by: (1) The thickness of the Yangxin Formation (P^v) limestone unit, which lies directly beneath ELIP, reduces from the center of erosional area to the outer edge. (2) Paleo-karst surfaces are present. (3) The clastic rocks of alluvial fan deposits, from the eroded materials in the maximum uplifted area, developed surrounding the inner zone. However, other scholars urge that those so-called "alluvial fan" deposits are "hydromagmatic deposits", erupted or emplaced at or near sea level, and conclude that there was no pre-emptive uplift in ELIP. In order to constrain the above-mentioned scientific issue, we conducted detailed field geological investigations and systematically measured geological sections to provide new evidence by using sedimentary data. 展开更多
关键词 Newly Discovered Fluvial-Lacustrine Sediments in the Western Yangtze Block and their Geological Significance for the emeishan large igneous province
下载PDF
Crustal Contaminations Responsible for the Petrogenesis of Basalts from the Emeishan Large Igneous Province,NW China:New Evidence from Ba Isotopes 被引量:2
6
作者 Dong Yi Jing Zhao +1 位作者 Chunhui Li Xiuhong Peng 《Journal of Earth Science》 SCIE CAS CSCD 2022年第1期109-120,共12页
Emeishan large igneous province (ELIP),one of the largest continental volcanic provinces worldwide (e.g.,Karoo),is extensively distributed along the western margin of the Yangtze Block.Even though the consensus that t... Emeishan large igneous province (ELIP),one of the largest continental volcanic provinces worldwide (e.g.,Karoo),is extensively distributed along the western margin of the Yangtze Block.Even though the consensus that the ELIP is of a plume-related origin has been reached for decades,the role of crustal contamination in the petrogenesis of these basalts is still debatable so far.This paper firstly reports the Ba isotopic compositions of the continental flood basalts from the Lijiang,Miyi and Emeishan regions to discuss the genesis of basalts from the ELIP.According to their TiO_(2) contents and Ti/Y ratios,these basalts are divided into two groups,the low-Ti basalts from Lijiang and the high-Ti basalts from Miyi and Emeishan.The Ba isotopic compositions show that the low-Ti basalts have the δ^(138/134)Ba values from-0.33‰to+0.23‰with an average of-0.02‰±0.40‰,and the high-Ti basalts from -0.38‰to+0.38‰with an average of 0.038‰±0.36‰,all of which show a wider range of Ba isotopes relative to that of the primitive mantle (PM).This is unlikely to be explained by partial melting,fractional crystallization or even chemical weathering owing to little Ba isotopic fractionation during these processes.In contrast,variable extents of crustal contamination into the basaltic magmas more likely resulted in such isotopic diversity.The ratios of incompatible elements (e.g.,Nb/U,La/Nb,and Nb/Y) further suggest that the low-Ti basalts experienced higher degrees of crustal contaminations than those high-Ti basalts,which is well consistent with their spatial distributions.In general,the basaltic magmas in the ELIP were probably contaminated by different degrees of crustal materials during their upwelling to the surface. 展开更多
关键词 emeishan large igneous province Ba isotope PETROGENESIS crustal contamination ISOTOPES
原文传递
Geochemical Characteristics and Metallogenesis of the Qingkuangshan Ni-Cu-PGE Mineralized Mafic-Ultramafic Intrusion in Huili County, Sichuan Province, SW China 被引量:5
7
作者 ZHU Feilin TAO Yan +1 位作者 HU Ruizhong MA Yansheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第3期590-607,共18页
The Qingkuangshan Ni-Cu-PGE deposit, located in the Xiaoguanhe region of Huili County, Sichuan Province, is one of several Ni-Cu-PGE deposits in the Emeishan Large Igneous Province (ELIP). The ore-bearing intrusion ... The Qingkuangshan Ni-Cu-PGE deposit, located in the Xiaoguanhe region of Huili County, Sichuan Province, is one of several Ni-Cu-PGE deposits in the Emeishan Large Igneous Province (ELIP). The ore-bearing intrusion is a mafic-ultramafic body. This paper reports major elements, trace elements and platinum-group elements in different types of rocks and sulfide-mineralized samples in the intrusion. These data are used to evaluate the source mantle characteristics, the degree of mantle partial melting, the composition of parental magma and the ore-forming processes. The results show that Qingkuangshan intrusion is part of the ELIP. The rocks have trace element ratios similar to the coeval Emeishan basalts. The primitive mantle-normalized patterns of Ni-Cu-PGE have positive slopes, and the ratios of Pd/Ir are lower than 22. The PGE compositions of sulfide ores and associated rocks are characterized by Ru depletion. The PGE contents in bulk sulfides are slightly depleted relative to Ni and Cu, which is similar to the Yangliuping Ni-Cu-PGE deposit. The composition of the parental magma for the intrusion is estimated to contain about 14.65 wt% MgO, 48.66 wt% SiO2 and 15.48 wt% FeOt, and the degree of mantle partial melting is estimated to be about 20%. In comparison with other typical Ni-Cu-PGE deposits in the ELIP, the Qingkuangshan Ni-Cu-PGE deposit has lower PGE contents than the Jinbaoshan PGE deposit, but has higher PGE contents than the Limahe and Baimazhai Ni-Cu deposit, and has similar PGE contents to the Yangliuping Ni-Cu-PGE deposit. The moderate PGE depletions in the bulk sulfide of the Qingkuanghan deposit suggest that the parental magma of the host intrusion may have undergone minor sulfide segregation at depth. The mixing calculations suggests that an average of 10% crustal contamination in the magma, which may have been the main cause of sulfide saturation in the magma. We propose that sulfide segregation from a moderately PGE depleted magma took place prior to magma emplacement at Qingkuangshan, that small amounts of immiscible sulfide droplets and olivine and chromite crystals were suspended in the ascending magma, and that the suspended materials settled down when the magma passed trough the Qingkuangshan conduit. The Qingkuangshan sulfide-bearing intrusion is interpreted to a feeder of Emeishan flood basalts in the region. 展开更多
关键词 Magmatic sulfide deposit mafic-ultramafic intrusion PGE Qingkuangshan emeishan large igneous province
下载PDF
Platinum-Group Element Geochemical Characteristics of the Picrites and High-Ti Basalts in the Binchuan Area,Yunnan Province 被引量:3
8
作者 BAI Mei ZHONG Hong +2 位作者 ZHU Weiguang BAI Zhongjie HE Defeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第1期158-175,共18页
The Binchuan area of Yunnan is located in the western part of the Emeishan large igneous province in the western margin of the Yangtze Block. In the present study, the Wuguiqing profile in thickness of about 1440 m is... The Binchuan area of Yunnan is located in the western part of the Emeishan large igneous province in the western margin of the Yangtze Block. In the present study, the Wuguiqing profile in thickness of about 1440 m is mainly composed of high-Ti basalts, with minor picrites in the lower part and andesites, trachytes, and rhyolites in the upper part. The picrites have relatively higher platinum- group element (PGE) contents (PGE=16.3-28.2 ppb), with high Cu/Zr and Pd/Zr ratios, and low S contents (5.03-16.9 ppm), indicating the parental magma is S-unsaturated and generated by high degree of partial melting of the Emeishan large igneous province (ELIP) mantle source. The slightly high Cu/Pd ratios (11 000-24 000) relative to that of the primitive mantle suggest that 0.007% sulfides have been retained in the mantle source. The PGE contents of the high-Ti basalts exhibit a wider range (~PGE=0.517-30.8 ppb). The samples in the middle and upper parts are depleted in PGE and have ~Nd (260 Ma) ratios ranging from -2.8 to -2.2, suggesting that crustal contamination of the parental magma during ascent triggered sulfur saturation and segregation of about 0.446%-0.554% sulfides, and the sulfide segregation process may also provide the ore-forming material for the magmatic Cu-Ni-PGE sulfide deposits close to the studied basalts. The samples in this area show Pt- Pd type primitive mantle-normalized PGE patterns, and the Pd/Ir ratios are higher than that of the primitive mantle (Pd/Ir=l), indicating that the obvious differentiation between Ir-group platinum- group elements (IPGE) and Pd-group platinum-group elements (PPGE) are mainly controlled by olivine or chromites fractionation during magma evolution. The Pd/Pt ratios of most samples are higher than the average ratio of mantle (Pd/Pt=0.55), showing that the differentiation happened between Pt and Pd. The differentiation in picrites may be relevant to Pt hosted in discrete refractory Pt-alloy phase in the mantle; whereas the differentiation in the high-Ti basalts is probably associated with the fractionation of Fe-Pt alloys, coprecipitating with Ir-Ru-Os alloys. Some high-Ti basalt samples exhibit negative Ru anomalies, possibly due to removal of laurite collected by the early crystallized chromites. 展开更多
关键词 PICRITES high-Ti basalts platinum-group element emeishan large igneous province sulfide segregation
下载PDF
Recycled carbon degassed from the Emeishan plume as the potential driver for the major end-Guadalupian carbon cycle perturbations 被引量:1
9
作者 Jiang Zhu Zhaochong Zhang +3 位作者 M.Santosh Shucheng Tan Yinan Deng Qiuhong Xie 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第4期86-92,共7页
Massive gas emissions(e.g.,CO_(2),CH_(4) and SO_(2))during the formation of large igneous provinces(LIPs)have been suggested as the primary cause of dramatic climatic change and the consequent ecological collapses and... Massive gas emissions(e.g.,CO_(2),CH_(4) and SO_(2))during the formation of large igneous provinces(LIPs)have been suggested as the primary cause of dramatic climatic change and the consequent ecological collapses and biotic crises.Thermogenic carbon of crustal sediments induced by intrusive magmatism throughout the LIPs is considered as the primary trigger for environmental catastrophe including mass extinction,as illustrated in the case of the Emeishan LIP in Southwest China.Herewe evaluate the Emeishan LIP to address the causal link between carbon degassing and environmental crises during the end-Guadalupian of Middle Permian.An assessment of the carbon flux degassed from recycled oceanic crust in the Emeishan plume shows that recycled oceanic crust contributed significantly to the carbon flux.Using evidence fromcarbonate carbon isotopic records at the Gualupian-Lopingian(G-L)boundary stratotype at Penglaitan of South China,our study suggests that carbon degassed from massive recycled components in the Emeishan plume served as a major end-Guadalupian(Middle Permian)carbon isotope excursion.The model based on the Emeishan LIP also offers new insights into the important role of recycled carbon released from other LIPs in climatic change and mass extinctions,as in the cases of the end-Permian Siberian and end-Cretaceous Deccan Traps.Our work highlights that carbon released from subducted slabs is returned to the atmosphere via upwelling mantle plumes,which could drive global climatic change and mass extinction. 展开更多
关键词 Recycled carbon Thermogenic carbon Carbon isotope excursion Environmental catastrophe emeishan large igneous province
下载PDF
Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits,SW China 被引量:39
10
作者 Mei-Fu Zhou Wei Terry Chen +3 位作者 Christina Yan Wang Stephen A.Prevec Patricia Pingping Liu Geoffrey H.Howarth 《Geoscience Frontiers》 SCIE CAS CSCD 2013年第5期481-502,共22页
Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongg... Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongge,and Baima deposits,are well described in the literature and are hosted in layered mafic-ultramafic intrusions in the Panxi region,the central ELIP.The same type of ELIP- related deposits also occur far to the south and include the Anyi deposit,about 130 km south of Panzhihua,and the Mianhuadi deposit in the Red River fault zone.The Anyi deposit is relatively small but is similarly hosted in a layered mafic intrusion.The Mianhuadi deposit has a zircon U-Pb age of~260 Ma and is thus contemporaneous with the ELIP.This deposit was variably metamorphosed during the Indosinian orogeny and Red River faulting.Compositionally,magnetite of the Mianhuadi deposit contains smaller amounts of Ti and V than that of the other deposits,possibly attributable to the later metamorphism.The distribution of the oxide ore deposits is not related to the domal structure of the ELIP.One major feature of all the oxide deposits in the ELIP is the spatial association of oxide-bearing gabbroic intrusions,syenitic plutons and high-Ti flood basalts.Thus,we propose that magmas from a mantle plume were emplaced into a shallow magma chamber where they were evolved into a field of liquid immiscibility to form two silicate liquids,one with an extremely Fe-Ti-rich gabbroic composition and the other syenitic.An immiscible Fe-Ti-(P) oxide melt may then separate from the mafic magmas to form oxide deposits.The parental magmas from which these deposits formed were likely Fe-Ti-rich picritic in composition and were derived from enriched asthenospheric mantle at a greater depth than the magmas that produced sulfide-bearing intrusions of the ELIP. 展开更多
关键词 Fe-Ti oxide Gabbroic layered intrusion Immiscible Fe-Ti-(P) rich melt emeishan large igneous province SW China
下载PDF
Textures and mineral compositions of the Xinjie layered intrusion,SW China:Implications for the origin of magnetite and fractionation process of Fe-Ti-rich basaltic magmas 被引量:11
11
作者 Huan Dong Changming Xing Christina Yan Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2013年第5期503-515,共13页
The Xinjie layered intrusion in the Panxi region,SW China,hosts both Fe-Ti oxide and platinum-group element(PGE) sulfide mineralization.The intrusion can be divided,from the base upward,into UnitsⅠ,ⅡandⅢ,in terms... The Xinjie layered intrusion in the Panxi region,SW China,hosts both Fe-Ti oxide and platinum-group element(PGE) sulfide mineralization.The intrusion can be divided,from the base upward,into UnitsⅠ,ⅡandⅢ,in terms of mineral assemblages.UnitsⅠandⅡare mainly composed of wehrlite and clino-pyroxenite, whereas UnitⅢis mainly composed of gabbro.PGE sulfide-rich layers mainly occur in Unit I, whereas thick Fe-Ti oxide-rich layers mainly occur in UnitⅢ.An ilmenite-rich layer occurs at the top of UnitⅠ.Fe-Ti oxides include magnetite and ilmenite.Small amounts of cumulus and intercumulus magnetite occur in UnitsⅠandⅡ.Cumulus magnetite grains are commonly euhedral and enclosed within olivine and clinopyroxene.They have high Cr2O3 contents ranging from 6.02 to 22.5 wt.%,indicating that they are likely an early crystallized phase from magmas.Intercumulus magnetite that usually displays ilmenite exsolution occupies the interstices between cumulus olivine crystals and coexists with interstitial clinopyroxene and plagioclase.Intercumulus magnetite has Cr2O3 ranging from 1.65 to 6.18 wt.%, lower than cumulus magnetite.The intercumulus magnetite may have crystallized from the trapped liquid.Large amounts of magnetite in UnitⅢcontains Cr2O3(&lt;0.28 wt.%) much lower than magnetite in UnitsⅠandⅡ.The magnetite in UnitⅢis proposed to be accumulated from a Fe-Ti-rich melt.The Fe-Ti-rich melt is estimated to contain 35.9 wt.%of SiO2,26.9 wt.%of FeOt,8.2 wt.%of TiO2,13.2 wt.%of CaO, 8.3 wt.%of MgO,5.5 wt.%of Al2O3 and 1.0 wt.%of P2O5.The composition is comparable with the Fe-rich melts in the Skaergaard and Sept Iles intrusions.Paired non-reactive microstructures,granophyre pockets and ilmenite-rich intergrowths,are representative of Si-rich melt and Fe-Ti-rich melt,and are the direct evidence for the existence of an immiscible Fe-Ti-rich melt that formed from an evolved ferro-basaltic magma. 展开更多
关键词 Geochemistry Fe-Ti oxides Mineral composition The Xinjie layered mafic-ultramafic intrusion emeishan large igneous province
下载PDF
Geochemical and Geochronological Constraints on the Origin of the Meta-basic Volcanic Rocks in the Tengtiaohe Zone, Southeast Yunnan 被引量:4
12
作者 QIAN Xin FENG Qinglai +1 位作者 WANG Yuejun ZHANG Zhibin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第2期669-683,共15页
The meta-basic volcanic rocks in the Tengtiaohe Zone yield zircon U–Pb ages of 258.8±2.5 Ma and 259.2±1.8 Ma, respectively which agree with the ages of flood basalts of ELIP and are similar to the basaltic ... The meta-basic volcanic rocks in the Tengtiaohe Zone yield zircon U–Pb ages of 258.8±2.5 Ma and 259.2±1.8 Ma, respectively which agree with the ages of flood basalts of ELIP and are similar to the basaltic rocks and komatiites from the Song Da Zone in northern Vietnam. The results suggest that the age of meta-basic volcanic rocks is Late Permian, rather than the Early Permian or Early Carboniferous ages as previously inferred. Most meta-basic volcanic rocks are strongly enriched in LREEs relative to HREEs and display trace element patterns similar to the ELIP high-Ti basalts, and are enriched in LILEs with negative Sr anomalies. Their initial 87^Sr/86^Sr ratios range from 0.705974 to 0.706188 and εNd(t) from-0.82 to-2.11. Their magmas were derived from an enriched and deep mantle source without significant crustal contamination. These meta-basic volcanic rocks formed in ELIP. Therefore, the Tengtiaohe Zone is not an ophiolite zone and can link to the Song Da Zone in northern Vietnam. 展开更多
关键词 meta-basic volcanic rocks geochemical characteristics zircon U–Pb dating emeishan large igneous province Tengtiaohe Zone
下载PDF
Paleo-oil reservoir pyrolysis and gas release in the Yangtze Block imply an alternative mechanism for the Late Permian Crisis
13
作者 Chengyu Yang Meijun Li +4 位作者 Zhiyong Ni Tieguan Wang Nansheng Qiu Ronghui Fang Long Wen 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期125-138,共14页
The causes of the global mass extinction that occurred around the Permian-Triassic boundary have been widely studied through the geological record and in various locations.The results show that volcanic activity was a... The causes of the global mass extinction that occurred around the Permian-Triassic boundary have been widely studied through the geological record and in various locations.The results show that volcanic activity was a key factor in initiating the crisis during the Late Permian.Compared to other thermal events triggered by volcanic activity,pyrolysis of petroleum in Pre-Permian reservoirs has rarely been suggested as a significant source of the greenhouse gases that caused the mass extinction.In this study,geochemical analysis is carried out of a huge paleo-oil reservoir in the Yangtze Block(YB),South China.The detection of mineral inclusions and pyrobitumens is evidence of rapid pyrolysis of accumulated oil in the Ediacaran reservoir.New evidence from hydrothermal minerals and the presence of domain mesophase in the pyrobitumen suggest that the pyrolysis process occurred abruptly and that greenhouse gases were rapidly released through venting pipes.The dating of such a complex geological event in this old and deeply buried reservoir is inevitably difficult and potentially unreliable.However,cross-validation of the multiple evidence sources,including hydrothermal minerals and domain mesophase,indicates that the rapid oil pyrolysis must have been driven by a major thermal event.Reconstruction of burial and thermal histories suggests that the thermal event was most likely to have been triggered by the Emeishan Large Igneous Province(ELIP),which was in a period of significant volcanic activity during the Late Permian.Massive volumes of gases,including methane,carbon dioxide,and possibly hydrogen sulfide,were released,causing a significant increase in greenhouse gases that may have contributed to global warming and the resulting mass extinction during the Late Permian Crisis(LPC). 展开更多
关键词 Oil reservoir pyrolysis Hydrothermal fluid emeishan large igneous province Gas release Mass extinction
下载PDF
Crystal Growth and Crystallization Time Scales of the Panzhihua Layered Intrusion:Constraint from Crystal Size Distribution
14
作者 LI Xuejun LUO Zhaohua +4 位作者 LI Xiaowei WANG Yu YANG Zongfeng LI Jie LIU Xiao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第5期1428-1439,共12页
The Panzhihua layered intrusions is generated closely related to the Emeishan LIPs.This paper analyzes the spatial distribution of plagioclase and pyroxene.The quantitative texture analysis of 2209 plagioclase shows t... The Panzhihua layered intrusions is generated closely related to the Emeishan LIPs.This paper analyzes the spatial distribution of plagioclase and pyroxene.The quantitative texture analysis of 2209 plagioclase shows that the characteristic length of plagioclase is 0.54 to 0.96 mm,the intercept variation range is large,from-0.67 to 0.96,and the slope is-1.85 to-1.04,the Aspect Ratio shows from 1.84 to 2.59 and fractal dimension D is 1.908–1.933.The quantitative texture analysis of 2342 pyroxene shows that the characteristic length of pyroxene is 0.38–0.64 mm,the intercept shows from 0.46 to 2.26,The slope ranges from-2.6 to-1.47,the Aspect Ratio value varies from 1.53 to 1.71,the fractal dimension D is 0.93 to 1.13.All the CSDs results of the Panzhihua intrusions indicate that plagioclase and pyroxene form in an open magma system and undergo four replenishment of magma injection.The plagioclase crystals do not grow as the lathlike shape,and the fractal growth leads to complex crystal surface.The plagioclase undergoes deformation compaction during the crystal process,and then is oriented.The pyroxene crystals grow along an approximately triaxial ratio and undergo texture adjustment and small crystal dissolution reabsorption.When all crystals in magma system grows up to 2 mm,the pyroxene undergoes cumulation in the Panzhihua layered intrusions.The plagioclase crystallization time scale is 171.23–304.41 years,representing that the crystallization is the more uniform in central part of the melt.The nucleation density continuously increases during the crystallization process of the magma system.The time scale to reach the final maximum crystal nucleation density is 15.28–58.98 years. 展开更多
关键词 crystal size distribution crystallization time scales layered intrusions emeishan large igneous province Panzhihua
下载PDF
Shear wave velocity structure of the crust and upper mantle in Southeastern Tibet and its geodynamic implications 被引量:21
15
作者 Zhiqi ZHANG Huajian YAO Yan YANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第9期1278-1293,共16页
Southeastern Tibet,which has complex topography and strong tectonic activity,is an important area for studying the subsurface deformation of the Tibetan Plateau.Through the two-station method on 10-year teleseismic Ra... Southeastern Tibet,which has complex topography and strong tectonic activity,is an important area for studying the subsurface deformation of the Tibetan Plateau.Through the two-station method on 10-year teleseismic Rayleigh wave data from 132 permanent stations in the southeastern Tibetan Plateau,which incorporates ambient noise data,we obtain the interstation phase velocity dispersion data in the period range of 5–150s.Then,we invert for the shear wave velocity of the crust and upper mantle through the direct 3-D inversion method.We find two low-velocity belts in the mid-lower crust.One belt is mainly in the SongPan-GangZi block and northwestern part of the Chuan-Dian diamond block,whereas the other belt is mainly in the Xiaojiang fault zone and its eastern part,the Yunnan-Guizhou Plateau.The low-velocity belt in the Xiaojiang fault zone is likely caused by plastic deformation or partial melting of felsic rocks due to crustal thickening.Moreover,the significant positive radial anisotropy(VSH>VSV)around the Xiaojiang fault zone further enhances the amplitude of low velocity anomaly in our VSVmodel.This crustal low-velocity zone also extends southward across the Red River fault and farther to northern Vietnam,which may be closely related to heat sources in the upper mantle.The two low-velocity belts are separated by a high-velocity zone near the Anninghe-Zemuhe fault system,which is exactly in the inner and intermediate zones of the Emeishan large igneous province(ELIP).We find an obvious high-velocity body situated in the crust of the inner zone of the ELIP,which may represent maficultramafic material that remained in the crust when the ELIP formed.In the upper mantle,there is a large-scale low-velocity anomaly in the Indochina and South China blocks south of the Red River fault.The low-velocity anomaly gradually extends northward along the Xiaojiang fault zone into the Yangtze Craton as depth increases.Through our velocity model,we think that southeastern Tibet is undergoing three different tectonic modes at the same time:(1)the upper crust is rigid,and as a result,the tectonic mode is mainly rigid block extrusion controlled by large strike-slip faults;(2)the viscoplastic materials in the middlelower crust,separated by rigid materials related to the ELIP,migrate plastically southward under the control of the regional stress field and fault systems;and(3)the upper mantle south of the Red River fault is mainly controlled by large-scale asthenospheric upwelling and may be closely related to lithospheric delamination and the eastward subduction and retreat of the Indian plate beneath Burma. 展开更多
关键词 Southeastern Tibet Surface wave tomography Shear wave velocity structure Xiaojiang fault system emeishan large igneous province Asthenospheric upwelling
原文传递
Petrology and geochemical characteristics of dolomite in the Middle Permian Maoukou Formation,central Sichuan 被引量:1
16
作者 Jianqiang Liu Haofu Zheng +4 位作者 Bo Liu Hongguang Liu Kaibo Shi Rongtao Guo Xuefeng Zhang 《Petroleum Research》 2017年第4期366-377,共12页
Dolomites of the Maokou Formation in the central Sichuan were mainly developed in the middle-upper part of Member 2 and the lower part of Member 3 of Maokou Formation,it could be divided into fine-to medium-grained ca... Dolomites of the Maokou Formation in the central Sichuan were mainly developed in the middle-upper part of Member 2 and the lower part of Member 3 of Maokou Formation,it could be divided into fine-to medium-grained calcareous dolomite,fine-to medium-grained dolomite and breccia dolomite according to petrology characteristic,and the latter two were dominant.Through contrast of geochemical characteristic between micritic limestone and different types of dolomite,the dolomite was characterized by low Fe content,high Mn content and low Sr content relative to the micritc limestone.The micritic limestone and different types of dolomite had similar rare earth element(REE)distribution patterns which were characterized by depletion of light REE,weak positive anomaly of La and negative anomaly of Ce,and the dolomite also had weak positive anomaly of Eu.Compared with the micritic limestone,the fine-to medium-grained dolomite and breccia dolomite had low values of δ^(18)O and obvious high ratios of^(87)Sr/^(86)Sr.REE distribution patterns of different types of dolomite indicated that some geochemical characteristics of primitive limestone were preserved during the dolomitization process in the Maokou Formation,while weak Eu positive anomaly of dolomite and isotopic difference in dolomite and limestone might be caused by high-temperature thermal fluids during the dolomitization process.The dolomitization of the Maokou Formation was controlled by some factors:(1)strata residual seawater and hydrothermal fluids derived from magmatism were major sources of Mg during the dolomitization process;(2)heating effect of Emeishan large igneous province provided abnormal high paleogeotemperature for dolomitization;(3)fault systems offered rapid migration channels for abnormal geothermal convection and dolomitization fluid;(4)limestone of grain-shoal facies with good porosity and permeability was more prone to dolomitization than micritic limestone.Abnormal geotemperature and abundant Mg supply derived from Emeishan Large Igneous Province were key factors for dolomitization in the Maokou Formation,and different types of dolomites were formed in different periods of the dolomitization process. 展开更多
关键词 DOLOMITE GEOCHEMISTRY DOLOMITIZATION emeishan large igneous province Maokou Formation Central Sichuan
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部