A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted ...A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted in improved activities of the fresh and aged catalyst by lowering the light-off temperature for methane in natural gas engines exhaust.展开更多
In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at...In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at five oil sites (supporting six wells) and three gas sites (supporting 12 wells) were surveyed, and emissions data were produced using a combination of measurements and engineering emission estimates. Ninety-six percent of the PCs surveyed were low actuation frequency intermittent vent type. The overall whole gas emission rate for the study was estimated at 0.36 scf/h with the majority of emissions occurring from three continuous vent PCs (1.1 scf/h average) and eleven (14%) malfunctioning intermittent vent PC systems (1.6 scf/h average). Oil sites employed, on average 10.3 PC systems per well compared to 1.5 for gas sites. Oil and gas sites had group average PC emission rates of 0.28 scf/h and 0.67 scf/h, respectively. This difference was due in part to differing site selection procedures used for oil and gas sites. The PC system types encountered, the engineering emissions estimate approach, and comparisons to measurements are described. Survey methods included identification of malfunctioning PC systems and emission measurements with augmented high volume sampling and installed mass flow meters, each providing a somewhat different representation of emissions that are elucidated through example cases.展开更多
In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at...In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at five oil sites (supporting six wells) and three gas sites (supporting 12 wells) were surveyed, and emissions data were produced using a combination of measurements and engineering emission estimates. Ninety-six percent of the PCs surveyed were low actuation frequency intermittent vent type. The overall whole gas emission rate for the study was estimated at 0.36 scf/h with the majority of emissions occurring from three continuous vent PCs (1.1 scf/h average) and eleven (14%) malfunctioning intermittent vent PC systems (1.6 scf/h average). Oil sites employed, on average 10.3 PC systems per well compared to 1.5 for gas sites. Oil and gas sites had group average PC emission rates of 0.28 scf/h and 0.67 scf/h, respectively. This difference was due in part to differing site selection procedures used for oil and gas sites. The PC system types encountered, the engineering emissions estimate approach, and comparisons to measurements are described. Survey methods included identification of malfunctioning PC systems and emission measurements with augmented high volume sampling and installed mass flow meters, each providing a somewhat different representation of emissions that are elucidated through example cases.展开更多
It is known that the transport sector has a fundamental importance in the modem society, as the economic development is directly linked to mobility. Over the years, the transport became linked to different environment...It is known that the transport sector has a fundamental importance in the modem society, as the economic development is directly linked to mobility. Over the years, the transport became linked to different environmental problems, which can be detached greenhouse gases emissions in the atmosphere, where in recent decades can be perceived the intensification and targeting of efforts in research and development of new technologies to reduce the levels of greenhouse gases emissions in the atmosphere. In this context, it can be highlighted the modem systems of electronic engine management, new automotive catalysts and the use of renewable fuels which contribute to reducing the environmental impact. This research had, as its purpose, the analysis of fuels characteristics used for testing, comparative analysis of gas emissions from a motor vehicle running on ethanol or natural gas fuels according to NBR 6601 and conducting tests to estimate the maximum catalytic efficiency. For the implementation of trial, a flex vehicle was installed in a chassis dynamometer equipped with a gas analyzer, in order that before the completion of the urban driving cycle, were determined the content of hydrocarbons corrected, carbon monoxide corrected, carbon dioxide and oxygen present in gas emissions from the engine. The research concluded that: the performance analysis for characterization of fuel showed consistent with ANP specifications; after tests performances, it can be stated that natural gas fuel was the fuel which had the highest content of hydrocarbons and carbon monoxide corrected, while ethanol had the highest amount of carbon dioxide and oxygen residue present in gas emissions; before a comparative analysis, the vehicle catalyst showed the best performance for reducing the content of hydrocarbon corrected present in exhaustion gases when it worked with natural gas fuel and showed maximum efficiency of 100% to reduce the content of carbon monoxide corrected for both fuels. Before this, it can be stated that the vehicle catalyst showed satisfactory performance, achieving good reduction levels of greenhouse gases emissions.展开更多
Dual-fuel premixed charge compression ignition (DF-PCCI) combustion has been proven to be a viable alternative to conventional diesel combustion in heavy-duty compression ignition engines due to its low nitrogen oxide...Dual-fuel premixed charge compression ignition (DF-PCCI) combustion has been proven to be a viable alternative to conventional diesel combustion in heavy-duty compression ignition engines due to its low nitrogen oxides (NOx) and particulate matter (PM) emissions. When natural gas (NG) is applied to a DF-PCCI engine, its low reactivity reduces the maximum pressure rise rate under high loads. However, the NG–diesel DF-PCCI engine suffers from low combustion efficiency under low loads. In this study, an injection strategy of fuel supply (NG and diesel) in a DF-PCCI engine was investigated in order to reduce both the fuel consumption and hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. A variation in the NG substitution and diesel start of energizing (SOE) was found to effectively control the formation of the fuel–air mixture. A double injection strategy of diesel was implemented to adjust the local reactivity of the mixture. Retardation of the diesel pilot SOE and a low fraction of the diesel pilot injection quantity were favorable for reducing the combustion loss. The introduction of exhaust gas recirculation (EGR) improved the fuel economy and reduced the NOx and PM emissions below Euro VI regulations by retarding the combustion phasing. The combination of an NG substitution of 40%, the double injection strategy of diesel, and a moderate EGR rate effectively improved the combustion efficiency and indicated efficiency, and reduced the HC and CO emissions under low load conditions.展开更多
A 10 kW-scale natural gas fueled proton exchange membrane fuel cell(PEMFC) distributed power plant is presented in this paper,which is designed for cogeneration of power and heat. With homemade catalysts for CO remova...A 10 kW-scale natural gas fueled proton exchange membrane fuel cell(PEMFC) distributed power plant is presented in this paper,which is designed for cogeneration of power and heat. With homemade catalysts for CO removal in a two-stage methanation process and integrated reactor in the fuel processing system,the reformed fuel with CO molar fraction less than 10-5 is obtained for the fuel cell stack. Based on Matlab/Simulink/Stateflow and xPC Target platform,a rapid control prototype(RCP) is developed for real-time condition management,signal tracking and parameter tuning,data storing,and man-machine interaction. In a typical running with 4.3 kW stack power,the hydrogen production efficiency,gross power generation efficiency and heat recovery efficiency approach to 76%,41% and 50%,respectively. The peak stack power reaches 7.3 kW. Though there is still considerable dis-tance to long-term operation at 10 kW-scale net power generation,it is a milestone for the PEMFC-based stationary application in China.展开更多
Road transport exhaust emissions represent the main sources of atmospheric pollution in urban areas, due to the growing number of circulating vehicles and travelled distances. In order to reduce this pollution source,...Road transport exhaust emissions represent the main sources of atmospheric pollution in urban areas, due to the growing number of circulating vehicles and travelled distances. In order to reduce this pollution source, stricter emission standards are periodically set by governments through- out the world. Consequently, the concentrations of gaseous pollutants and particulate mass to be measured during type-approval tests of new vehicles are becoming progressively lower;moreover from 2011, diesel cars have to comply with particle number limit. In order to assess emission levels of different technology vehicles and investigate the use of a particulate number measurement technique at the exhaust of very low-emitting vehicles, an experimental activity was carried out on three in-use vehicles: a diesel car equipped with a particulate trap (DPF), a hybrid gasoline-elec- tric car and a bi-fuel passenger car fuelled with compressed natural gas (CNG). Cold and hot gaseous and particulate emission factors and fuel consumption were measured during the execution of real and regulatory driving cycles on a chassis dynamometer. Particulate was characterized in terms of mass only for the diesel car and of particle number for all vehicles. The emissions measured over the NEDC show that all three vehicles comply with their standard limits, except CO for CNG passenger car and NOx for diesel car. Cold start influences CO and HC emissions and fuel consumption for all the tested vehicles and in particular for the hybrid car. The real driving cycle is the most critical pattern for the emissions of almost all pollutants. During constant speed tests, the emissions of particles of hybrid car are an order of magnitude lower than those of the CNG car.展开更多
Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the mai...Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions.展开更多
14%REO-2.5%LaO-33.5%ZrO-50%AlO(RE = Ce, Y, Pr) composites were prepared by a coprecipitation method. The Pd catalysts were obtained by an aqueous solution of Pd(NO)loaded on the rare earths modified composites with an...14%REO-2.5%LaO-33.5%ZrO-50%AlO(RE = Ce, Y, Pr) composites were prepared by a coprecipitation method. The Pd catalysts were obtained by an aqueous solution of Pd(NO)loaded on the rare earths modified composites with an initial wet impregnated method. The experiment results show that catalytic activity of the rare earths modified Pd/LaO-ZrO-AlOcatalysts is better than bare sample for methane oxidation. The structural characterization results reveal that the rare earths modified Pd catalysts increase amounts of surface active oxygen species by X-ray photoelectron spectroscopy(XPS) analysis and improve the dispersion of active component from H2-temperature programmed reduction(H2-TPR) measurement compared with bare sample. Especially,Pd/14%YO-2.5%LaO-33.5%ZrO-50%AlOsample exhibits highly active stability, it is related to the Pd particles highly dispersion,which was observed by transmission electron microscope(TEM) images.展开更多
Interest in hydrogen-powered rail vehicles has gradually increased worldwide over recent decades due to the global pressure on reduction in greenhouse gas emissions,technology availability,and multiple options of powe...Interest in hydrogen-powered rail vehicles has gradually increased worldwide over recent decades due to the global pressure on reduction in greenhouse gas emissions,technology availability,and multiple options of power supply.In the past,research and development have been primarily focusing on light rail and regional trains,but the interest in hydrogen-powered freight and heavy haul trains is also growing.The review shows that some technical feasibility has been demonstrated from the research and experiments on proof-of-concept designs.Several rail vehicles powered by hydrogen either are currently operating or are the subject of experimental programmes.The paper identifies that fuel cell technology is well developed and has obvious application in providing electrical traction power,while hydrogen combustion in traditional IC engines and gas turbines is not yet well developed.The need for on-board energy storage is discussed along with the benefits of energy management and control systems.展开更多
The regulated gaseous emissions from 2 China-V compressed natural gas(CNG)buses and 2 China-V diesel buses were investigated using a portable emissions measurement system(PEMS)under real road driving conditions.Compar...The regulated gaseous emissions from 2 China-V compressed natural gas(CNG)buses and 2 China-V diesel buses were investigated using a portable emissions measurement system(PEMS)under real road driving conditions.Compared to diesel buses,CNG buses emit less NOx pollutants,but more HC and CO pollutants based on the test results obtained in this paper.In order to evaluate the pollutant emission status of CNG buses in Beijing,an instantaneous emission model as a function of vehicle speed and vehicle specific power(VSP)was developed and validated based on emission data taken from one CNG bus.The input of the instantaneous emission model consists of driving cycle,vehicle parameters,road conditions,ambient conditions and accessory use,all of which were used to calculate the instantaneous vehicle specific power(VSP).For the core model,a group of pollutant emission maps represented as functions of vehicle speed and VSP were used to calculate the second by second emission rates.Finally,the instantaneous emission rates,emission factors and fuel consumption over the selected driving cycle could be obtained as the model outputs.The predicted results for the emissions and fuel consumption of the CNG bus were very close to the tested emission data.The prediction errors for emission factors and fuel consumption varied in the range of-1.6 2%to-5.8%.展开更多
Vessel emissions have contributed a great deal to air quality deterioration in China.Hence,the Chinese government has promulgated a series of stringent emission regulations.It is in this context that vessel emission c...Vessel emissions have contributed a great deal to air quality deterioration in China.Hence,the Chinese government has promulgated a series of stringent emission regulations.It is in this context that vessel emission control technology research is in full swing.In particular,during the 13th Five-Year Plan,the air pollution control technology of vessels has greatly improved.Vessel emission control has followed two main governance routes:source emission reduction and aftertreatment technology.Source control focuses on alternative fuels,with two main directions,the development of new fuels and the modification of existing fuels.Moreover,after-treatment technologies have also been developed,including wet desulfurization technology using seawater or alkaline liquids as wet washing liquids and selective catalytic reduction(SCR)for the control of NOx emission.Due to China’s increasingly stringent emissions standards and regulations,work on the development of clean alternative fuels and further upgrading the collaborative application of after-treatment technologies to meet the near-zero-emissions requirements of vessels is still necessary.展开更多
Fuel cell vehicles, as the most promising clean vehicle technology for the future, represent the major chances for the developing world to avoid high-carbon lock-in in the transportation sector. In this paper, by taki...Fuel cell vehicles, as the most promising clean vehicle technology for the future, represent the major chances for the developing world to avoid high-carbon lock-in in the transportation sector. In this paper, by taking China as an example, the unique advantages for China to deploy fuel cell vehicles are reviewed. Subsequently, this paper analyzes the greenhouse gas (GHG) emissions from 19 fuel cell vehicle utilization pathways by using the life cycle assessment approach. The results show that with the current grid mix in China, hydrogen from water electro- lysis has the highest GHG emissions, at 3.10 kgCO2/km, while by-product hydrogen from the chlor-alkali industry has the lowest level, at 0.08 kgCO2/krn. Regarding hydrogen storage and transportation, a combination of gas-hydrogen road transportation and single compression in the refueling station has the lowest GHG emissions. Regarding vehicle operation, GHG emissions from indirect methanol fuel cell are proved to be lower than those from direct hydrogen fuel cells. It is recommended that although fuel cell vehicles are promising for the developing world in reducing GHG emissions, the vehicle technology and hydrogen production issues should be well addressed to ensure the life-cycle low-carbon performance.展开更多
As compared to conventional diesel heavy-duty vehicles,natural gas vehicles have been proved to be more eco-friendly due to their lower production of greenhouse gas and pollu-tant emissions,which are causing enormous ...As compared to conventional diesel heavy-duty vehicles,natural gas vehicles have been proved to be more eco-friendly due to their lower production of greenhouse gas and pollu-tant emissions,which are causing enormous adverse effects on global warming and air pol-lution.However,natural gas vehicles were rarely studied before,especially through on-road measurements.In this study,a portable emission measurement system(PEMS)was em-ployed to investigate the real-world emissions of nitrogen oxides(NO_(x))(nitrogen monoxide(NO),nitrogen dioxide(NO_(2))),total hydrocarbons(THC),carbon monoxide(CO),and carbon dioxide(CO_(2))from two liquified natural gas(LNG)China V heavy-duty cleaning sanitation trucks with different weight.Associated with the more aggressive driving behaviors,the ve-hicle with lower weight exhibited higher CO_(2)(3%)but lower NO_(x)(48.3%)(NO_(2)(78.2%)and NO(29.4%)),CO(44.8%),and THC(3.7%)emission factors.Aggressive driving behaviors were also favorable to the production of THC,especially those in the medium-speed range but sig-nificantly negative to the production of CO and NO_(2),especially those in the low-speed range with high engine load.In particular,the emission rate ratio of NO_(2)/NO decreased with the increase of speed/scaled tractive power in different speed ranges.展开更多
基金the National Natural Science Foundation of China(No:20273043)the Ministry of Education of China for providing financial support for this project
文摘A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted in improved activities of the fresh and aged catalyst by lowering the light-off temperature for methane in natural gas engines exhaust.
文摘In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at five oil sites (supporting six wells) and three gas sites (supporting 12 wells) were surveyed, and emissions data were produced using a combination of measurements and engineering emission estimates. Ninety-six percent of the PCs surveyed were low actuation frequency intermittent vent type. The overall whole gas emission rate for the study was estimated at 0.36 scf/h with the majority of emissions occurring from three continuous vent PCs (1.1 scf/h average) and eleven (14%) malfunctioning intermittent vent PC systems (1.6 scf/h average). Oil sites employed, on average 10.3 PC systems per well compared to 1.5 for gas sites. Oil and gas sites had group average PC emission rates of 0.28 scf/h and 0.67 scf/h, respectively. This difference was due in part to differing site selection procedures used for oil and gas sites. The PC system types encountered, the engineering emissions estimate approach, and comparisons to measurements are described. Survey methods included identification of malfunctioning PC systems and emission measurements with augmented high volume sampling and installed mass flow meters, each providing a somewhat different representation of emissions that are elucidated through example cases.
文摘In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at five oil sites (supporting six wells) and three gas sites (supporting 12 wells) were surveyed, and emissions data were produced using a combination of measurements and engineering emission estimates. Ninety-six percent of the PCs surveyed were low actuation frequency intermittent vent type. The overall whole gas emission rate for the study was estimated at 0.36 scf/h with the majority of emissions occurring from three continuous vent PCs (1.1 scf/h average) and eleven (14%) malfunctioning intermittent vent PC systems (1.6 scf/h average). Oil sites employed, on average 10.3 PC systems per well compared to 1.5 for gas sites. Oil and gas sites had group average PC emission rates of 0.28 scf/h and 0.67 scf/h, respectively. This difference was due in part to differing site selection procedures used for oil and gas sites. The PC system types encountered, the engineering emissions estimate approach, and comparisons to measurements are described. Survey methods included identification of malfunctioning PC systems and emission measurements with augmented high volume sampling and installed mass flow meters, each providing a somewhat different representation of emissions that are elucidated through example cases.
文摘It is known that the transport sector has a fundamental importance in the modem society, as the economic development is directly linked to mobility. Over the years, the transport became linked to different environmental problems, which can be detached greenhouse gases emissions in the atmosphere, where in recent decades can be perceived the intensification and targeting of efforts in research and development of new technologies to reduce the levels of greenhouse gases emissions in the atmosphere. In this context, it can be highlighted the modem systems of electronic engine management, new automotive catalysts and the use of renewable fuels which contribute to reducing the environmental impact. This research had, as its purpose, the analysis of fuels characteristics used for testing, comparative analysis of gas emissions from a motor vehicle running on ethanol or natural gas fuels according to NBR 6601 and conducting tests to estimate the maximum catalytic efficiency. For the implementation of trial, a flex vehicle was installed in a chassis dynamometer equipped with a gas analyzer, in order that before the completion of the urban driving cycle, were determined the content of hydrocarbons corrected, carbon monoxide corrected, carbon dioxide and oxygen present in gas emissions from the engine. The research concluded that: the performance analysis for characterization of fuel showed consistent with ANP specifications; after tests performances, it can be stated that natural gas fuel was the fuel which had the highest content of hydrocarbons and carbon monoxide corrected, while ethanol had the highest amount of carbon dioxide and oxygen residue present in gas emissions; before a comparative analysis, the vehicle catalyst showed the best performance for reducing the content of hydrocarbon corrected present in exhaustion gases when it worked with natural gas fuel and showed maximum efficiency of 100% to reduce the content of carbon monoxide corrected for both fuels. Before this, it can be stated that the vehicle catalyst showed satisfactory performance, achieving good reduction levels of greenhouse gases emissions.
基金the Global-Top Project,Development of Advanced Combustion Technology for Global Top Low Emission Vehicle(2016002070001)the Ministry of Environment(MOE)of Korea for financial support by the Center for Environmentally Friendly Vehicle(CEFV)
文摘Dual-fuel premixed charge compression ignition (DF-PCCI) combustion has been proven to be a viable alternative to conventional diesel combustion in heavy-duty compression ignition engines due to its low nitrogen oxides (NOx) and particulate matter (PM) emissions. When natural gas (NG) is applied to a DF-PCCI engine, its low reactivity reduces the maximum pressure rise rate under high loads. However, the NG–diesel DF-PCCI engine suffers from low combustion efficiency under low loads. In this study, an injection strategy of fuel supply (NG and diesel) in a DF-PCCI engine was investigated in order to reduce both the fuel consumption and hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. A variation in the NG substitution and diesel start of energizing (SOE) was found to effectively control the formation of the fuel–air mixture. A double injection strategy of diesel was implemented to adjust the local reactivity of the mixture. Retardation of the diesel pilot SOE and a low fraction of the diesel pilot injection quantity were favorable for reducing the combustion loss. The introduction of exhaust gas recirculation (EGR) improved the fuel economy and reduced the NOx and PM emissions below Euro VI regulations by retarding the combustion phasing. The combination of an NG substitution of 40%, the double injection strategy of diesel, and a moderate EGR rate effectively improved the combustion efficiency and indicated efficiency, and reduced the HC and CO emissions under low load conditions.
基金Supported by the Beijing Municipal Major Science & Technology Project(D0406001000091) the National Natural Science Foundation of China(50706019)
文摘A 10 kW-scale natural gas fueled proton exchange membrane fuel cell(PEMFC) distributed power plant is presented in this paper,which is designed for cogeneration of power and heat. With homemade catalysts for CO removal in a two-stage methanation process and integrated reactor in the fuel processing system,the reformed fuel with CO molar fraction less than 10-5 is obtained for the fuel cell stack. Based on Matlab/Simulink/Stateflow and xPC Target platform,a rapid control prototype(RCP) is developed for real-time condition management,signal tracking and parameter tuning,data storing,and man-machine interaction. In a typical running with 4.3 kW stack power,the hydrogen production efficiency,gross power generation efficiency and heat recovery efficiency approach to 76%,41% and 50%,respectively. The peak stack power reaches 7.3 kW. Though there is still considerable dis-tance to long-term operation at 10 kW-scale net power generation,it is a milestone for the PEMFC-based stationary application in China.
文摘Road transport exhaust emissions represent the main sources of atmospheric pollution in urban areas, due to the growing number of circulating vehicles and travelled distances. In order to reduce this pollution source, stricter emission standards are periodically set by governments through- out the world. Consequently, the concentrations of gaseous pollutants and particulate mass to be measured during type-approval tests of new vehicles are becoming progressively lower;moreover from 2011, diesel cars have to comply with particle number limit. In order to assess emission levels of different technology vehicles and investigate the use of a particulate number measurement technique at the exhaust of very low-emitting vehicles, an experimental activity was carried out on three in-use vehicles: a diesel car equipped with a particulate trap (DPF), a hybrid gasoline-elec- tric car and a bi-fuel passenger car fuelled with compressed natural gas (CNG). Cold and hot gaseous and particulate emission factors and fuel consumption were measured during the execution of real and regulatory driving cycles on a chassis dynamometer. Particulate was characterized in terms of mass only for the diesel car and of particle number for all vehicles. The emissions measured over the NEDC show that all three vehicles comply with their standard limits, except CO for CNG passenger car and NOx for diesel car. Cold start influences CO and HC emissions and fuel consumption for all the tested vehicles and in particular for the hybrid car. The real driving cycle is the most critical pattern for the emissions of almost all pollutants. During constant speed tests, the emissions of particles of hybrid car are an order of magnitude lower than those of the CNG car.
文摘Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions.
基金Project suppored by National Natural Science Foundation of China(21673146)
文摘14%REO-2.5%LaO-33.5%ZrO-50%AlO(RE = Ce, Y, Pr) composites were prepared by a coprecipitation method. The Pd catalysts were obtained by an aqueous solution of Pd(NO)loaded on the rare earths modified composites with an initial wet impregnated method. The experiment results show that catalytic activity of the rare earths modified Pd/LaO-ZrO-AlOcatalysts is better than bare sample for methane oxidation. The structural characterization results reveal that the rare earths modified Pd catalysts increase amounts of surface active oxygen species by X-ray photoelectron spectroscopy(XPS) analysis and improve the dispersion of active component from H2-temperature programmed reduction(H2-TPR) measurement compared with bare sample. Especially,Pd/14%YO-2.5%LaO-33.5%ZrO-50%AlOsample exhibits highly active stability, it is related to the Pd particles highly dispersion,which was observed by transmission electron microscope(TEM) images.
文摘Interest in hydrogen-powered rail vehicles has gradually increased worldwide over recent decades due to the global pressure on reduction in greenhouse gas emissions,technology availability,and multiple options of power supply.In the past,research and development have been primarily focusing on light rail and regional trains,but the interest in hydrogen-powered freight and heavy haul trains is also growing.The review shows that some technical feasibility has been demonstrated from the research and experiments on proof-of-concept designs.Several rail vehicles powered by hydrogen either are currently operating or are the subject of experimental programmes.The paper identifies that fuel cell technology is well developed and has obvious application in providing electrical traction power,while hydrogen combustion in traditional IC engines and gas turbines is not yet well developed.The need for on-board energy storage is discussed along with the benefits of energy management and control systems.
基金Supported by the National Key Research and Development Plan(2016YFC0208005)the National Natural Science Foundation of China(51576016)
文摘The regulated gaseous emissions from 2 China-V compressed natural gas(CNG)buses and 2 China-V diesel buses were investigated using a portable emissions measurement system(PEMS)under real road driving conditions.Compared to diesel buses,CNG buses emit less NOx pollutants,but more HC and CO pollutants based on the test results obtained in this paper.In order to evaluate the pollutant emission status of CNG buses in Beijing,an instantaneous emission model as a function of vehicle speed and vehicle specific power(VSP)was developed and validated based on emission data taken from one CNG bus.The input of the instantaneous emission model consists of driving cycle,vehicle parameters,road conditions,ambient conditions and accessory use,all of which were used to calculate the instantaneous vehicle specific power(VSP).For the core model,a group of pollutant emission maps represented as functions of vehicle speed and VSP were used to calculate the second by second emission rates.Finally,the instantaneous emission rates,emission factors and fuel consumption over the selected driving cycle could be obtained as the model outputs.The predicted results for the emissions and fuel consumption of the CNG bus were very close to the tested emission data.The prediction errors for emission factors and fuel consumption varied in the range of-1.6 2%to-5.8%.
基金supported by the National Key Research and Development Program of China(No.2019YFC0214803)。
文摘Vessel emissions have contributed a great deal to air quality deterioration in China.Hence,the Chinese government has promulgated a series of stringent emission regulations.It is in this context that vessel emission control technology research is in full swing.In particular,during the 13th Five-Year Plan,the air pollution control technology of vessels has greatly improved.Vessel emission control has followed two main governance routes:source emission reduction and aftertreatment technology.Source control focuses on alternative fuels,with two main directions,the development of new fuels and the modification of existing fuels.Moreover,after-treatment technologies have also been developed,including wet desulfurization technology using seawater or alkaline liquids as wet washing liquids and selective catalytic reduction(SCR)for the control of NOx emission.Due to China’s increasingly stringent emissions standards and regulations,work on the development of clean alternative fuels and further upgrading the collaborative application of after-treatment technologies to meet the near-zero-emissions requirements of vessels is still necessary.
文摘Fuel cell vehicles, as the most promising clean vehicle technology for the future, represent the major chances for the developing world to avoid high-carbon lock-in in the transportation sector. In this paper, by taking China as an example, the unique advantages for China to deploy fuel cell vehicles are reviewed. Subsequently, this paper analyzes the greenhouse gas (GHG) emissions from 19 fuel cell vehicle utilization pathways by using the life cycle assessment approach. The results show that with the current grid mix in China, hydrogen from water electro- lysis has the highest GHG emissions, at 3.10 kgCO2/km, while by-product hydrogen from the chlor-alkali industry has the lowest level, at 0.08 kgCO2/krn. Regarding hydrogen storage and transportation, a combination of gas-hydrogen road transportation and single compression in the refueling station has the lowest GHG emissions. Regarding vehicle operation, GHG emissions from indirect methanol fuel cell are proved to be lower than those from direct hydrogen fuel cells. It is recommended that although fuel cell vehicles are promising for the developing world in reducing GHG emissions, the vehicle technology and hydrogen production issues should be well addressed to ensure the life-cycle low-carbon performance.
基金This work was supported by the National Key Research and Development Project(No.2016YFC0201004)the National Natural Science Foundation of China(No.42005108)the Science and Technological Fund of Anhui Province for Outstanding Youth(No.1808085J19).
文摘As compared to conventional diesel heavy-duty vehicles,natural gas vehicles have been proved to be more eco-friendly due to their lower production of greenhouse gas and pollu-tant emissions,which are causing enormous adverse effects on global warming and air pol-lution.However,natural gas vehicles were rarely studied before,especially through on-road measurements.In this study,a portable emission measurement system(PEMS)was em-ployed to investigate the real-world emissions of nitrogen oxides(NO_(x))(nitrogen monoxide(NO),nitrogen dioxide(NO_(2))),total hydrocarbons(THC),carbon monoxide(CO),and carbon dioxide(CO_(2))from two liquified natural gas(LNG)China V heavy-duty cleaning sanitation trucks with different weight.Associated with the more aggressive driving behaviors,the ve-hicle with lower weight exhibited higher CO_(2)(3%)but lower NO_(x)(48.3%)(NO_(2)(78.2%)and NO(29.4%)),CO(44.8%),and THC(3.7%)emission factors.Aggressive driving behaviors were also favorable to the production of THC,especially those in the medium-speed range but sig-nificantly negative to the production of CO and NO_(2),especially those in the low-speed range with high engine load.In particular,the emission rate ratio of NO_(2)/NO decreased with the increase of speed/scaled tractive power in different speed ranges.