期刊文献+
共找到653篇文章
< 1 2 33 >
每页显示 20 50 100
A Simulated Annealing Algorithm for Training Empirical Potential Functions of Protein Folding 被引量:1
1
作者 WANGYu-hong LIWei 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第1期73-77,共5页
In this paper are reported the local minimum problem by means of current greedy algorithm for training the empirical potential function of protein folding on 8623 non-native structures of 31 globular proteins and a so... In this paper are reported the local minimum problem by means of current greedy algorithm for training the empirical potential function of protein folding on 8623 non-native structures of 31 globular proteins and a solution of the problem based upon the simulated annealing algorithm. This simulated annealing algorithm is indispensable for developing and testing highly refined empirical potential functions. 展开更多
关键词 empirical potential function of protein folding TRAINING Simulated annealing Greedy algorithm
下载PDF
Automatic target recognition of moving target based on empirical mode decomposition and genetic algorithm support vector machine 被引量:4
2
作者 张军 欧建平 占荣辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1389-1396,共8页
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S... In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively. 展开更多
关键词 automatic target recognition(ATR) moving target empirical mode decomposition genetic algorithm support vector machine
下载PDF
NON-LINEAR DYNAMIC MODEL RETRIEVAL OF SUBTROPICAL HIGH BASED ON EMPIRICAL ORTHOGONAL FUNCTION AND GENETIC ALGORITHM
3
作者 张韧 洪梅 +4 位作者 孙照渤 牛生杰 朱伟军 闵锦忠 万齐林 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第12期1645-1653,共9页
Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirica... Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirical orthogonal function) temporal-spatial separation technique, the disassembled EOF time coefficients series were regarded as dynamical model variables, and dynamic system retrieval idea as well as genetic algorithm were introduced to make dynamical model parameters optimization search, then, a reasonable non-linear dynamic model of EOF time-coefficients was established. By dynamic model integral and EOF temporal-spatial components assembly, a mid-/long-term forecast of subtropical high was carried out. The experimental results show that the forecast results of dynamic model are superior to that of general numerical model forecast results. A new modeling idea and forecast technique is presented for diagnosing and forecasting such complicated weathers as subtropical high. 展开更多
关键词 genetic algorithm empirical orthogonal function non-linear model retrieval subtropical high
下载PDF
Segmented second algorithm of empirical mode decomposition
4
作者 张敏聪 朱开玉 李从心 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期444-449,共6页
A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency ... A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency analysis. The original data is divided into some segments with the same length. Each segment data is processed based on the principle of the first-level EMD decomposition. The algorithm is compared with the traditional EMD and results show that it is more useful and effective for analyzing nonlinear and non-stationary signals. 展开更多
关键词 segmented second empirical mode decomposition (EMD) algorithm time-frequency analysis intrinsic mode functions (IMF) first-level decomposition
下载PDF
A Novel Empirical Equation for Relative Permeability in Low Permeability Reservoirs
5
作者 葛玉磊 李树荣 曲珂馨 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1274-1278,共5页
In this paper, a novel empirical equation is proposed to calculate the relative permeability of low permeability reservoir. An improved item is introduced on the basis of Rose empirical formula and Al-Fattah empirical... In this paper, a novel empirical equation is proposed to calculate the relative permeability of low permeability reservoir. An improved item is introduced on the basis of Rose empirical formula and Al-Fattah empirical formula, with one simple model to describe oil/water relative permeability. The position displacement idea of bare bones particle swarm optimization is applied to change the mutation operator to improve the RNA genetic algorithm. The parameters of the new empirical equation are optimized with the hybrid RNA genetic algorithm(HRGA) based on the experimental data. The data is obtained from a typical low permeability reservoir well 54 core 27-1 in Gu Dong by unsteady method. We carry out matlab programming simulation with HRGA. The comparison and error analysis show that the empirical equation proposed is more accurate than the Rose empirical formula and the exponential model. The generalization of the empirical equation is also verified. 展开更多
关键词 empirical equation Relative PERMEABILITY Hybrid RNA GENETIC algorithm Improved ITEM Low PERMEABILITY RESERVOIRS BARE bones particle SWARM
下载PDF
基于改进DQN算法的无人仓多AGV路径规划 被引量:1
6
作者 谢勇 郑绥君 +1 位作者 程念胜 朱洪君 《工业工程》 2024年第1期36-44,53,共10页
针对无人仓中多AGV路径规划与冲突问题,以最小化总行程时间为目标,建立多AGV路径规划模型,提出一种基于动态决策的改进DQN算法。算法设计了基于单AGV静态路径规划的经验知识模型,指导AGV的学习探索方向,提前规避冲突与障碍物,加快算法... 针对无人仓中多AGV路径规划与冲突问题,以最小化总行程时间为目标,建立多AGV路径规划模型,提出一种基于动态决策的改进DQN算法。算法设计了基于单AGV静态路径规划的经验知识模型,指导AGV的学习探索方向,提前规避冲突与障碍物,加快算法收敛。同时提出基于总行程时间最短的冲突消解策略,从根本上解决多AGV路径冲突与死锁问题。最后,建立无人仓栅格地图进行仿真实验。结果表明,本文提出的模型和算法较其他DQN算法收敛速度提升13.3%,平均损失值降低26.3%。这说明该模型和算法有利于规避和化解无人仓多AGV路径规划冲突,减少多AGV总行程时间,对提高无人仓作业效率具有重要指导意义。 展开更多
关键词 多AGV 路径规划 DQN算法 经验知识 冲突消解
下载PDF
基于遗传算法的磨削力模型系数优化及验证 被引量:1
7
作者 王栋 张志鹏 +3 位作者 赵睿 张君宇 乔瑞勇 孙少铮 《郑州大学学报(工学版)》 北大核心 2024年第1期21-28,共8页
在磨削力模型求解问题中,目前大多使用分段计算法或列方程组直接计算各个待求系数,不仅计算量大且其精度也无法保证。另外,传统的回归模型容易陷入局部最优,难以描述非线性关系。为此,将遗传算法引入到非线性优化函数参数优化中,基于外... 在磨削力模型求解问题中,目前大多使用分段计算法或列方程组直接计算各个待求系数,不仅计算量大且其精度也无法保证。另外,传统的回归模型容易陷入局部最优,难以描述非线性关系。为此,将遗传算法引入到非线性优化函数参数优化中,基于外圆横向磨削力模型、平面磨削力模型、外圆纵向磨削力模型等现有的模型数据,开展磨削力理论模型的系数优化方法研究。相关性分析结果表明:通过计算得到的3种模型磨削力的预测精度提高了14.69%~42.54%,且3种模型所预测的法向磨削力的平均误差分别为5.9%、9.13%、3.23%,切向力平均误差分别为6.78%、8.36%、3.69%。经对比知,优化后的模型拟合度较好,模型预测精度显著提高。遗传算法优化后的非线性优化函数GA-LSQ算法更适合磨削力模型的求解,可对磨削力的预测及实际加工生产中的参数优化提供参考。 展开更多
关键词 磨削力模型 外圆磨削 平面磨削 经验公式 模型系数优化 模型预测 遗传算法 非线性优化函数
下载PDF
基于无人艇的导航雷达目标检测跟踪算法
8
作者 王伟 杜旭洋 +1 位作者 杨志伟 吴凡 《系统工程与电子技术》 EI CSCD 北大核心 2024年第5期1561-1572,共12页
在无人艇利用导航雷达进行环境感知的过程中,针对雷达回波图中出现的区域破碎现象以及对运动目标进行跟踪时存在较大误差的问题,提出了一种应用于导航雷达的目标检测跟踪方法提高无人艇对水面目标的检测能力。首先,对雷达原始回波图像... 在无人艇利用导航雷达进行环境感知的过程中,针对雷达回波图中出现的区域破碎现象以及对运动目标进行跟踪时存在较大误差的问题,提出了一种应用于导航雷达的目标检测跟踪方法提高无人艇对水面目标的检测能力。首先,对雷达原始回波图像解析并进行预处理操作;其次,在图像连通的基础上,设计自适应阈值分割Hausdorff匹配算法对回波图和地图进行匹配,区分属于目标和陆地的回波;然后,对连续两帧的雷达回波图进行目标匹配;最后,通过加入预测序列模型的经验模态分解算法优化检测跟踪结果,提高获取目标信息的准确性。实验验证结果表明:对1 km内相对运动速度低于30节的水面目标,所提方法目标检测概率提升了6.5%,距离误差低于2%,航速误差低于6%,航向误差低于6°,整体性能优于工程中常用的检测跟踪方法。 展开更多
关键词 环境感知 导航雷达 连通算法 地图匹配 经验模态分解算法
下载PDF
基于调频连续波雷达的人体生命体征检测算法
9
作者 李牧 骆宇 柯熙政 《计算机应用》 CSCD 北大核心 2024年第6期1978-1986,共9页
针对现有雷达非接触生命体征检测精度低、实时性差等问题,提出一种基于调频连续波(FMCW)雷达的人体生命体征检测算法。首先,通过毫米波雷达获取生命体征信号;其次,利用改进的经验小波变换(EWT)算法,实现生命体征信号的自适应分解和重构... 针对现有雷达非接触生命体征检测精度低、实时性差等问题,提出一种基于调频连续波(FMCW)雷达的人体生命体征检测算法。首先,通过毫米波雷达获取生命体征信号;其次,利用改进的经验小波变换(EWT)算法,实现生命体征信号的自适应分解和重构,通过引入麻雀搜索算法(SSA)和模糊熵(FE)寻找频谱分割线的最优值;最后,通过改进频率插值的估计算法计算心率和呼吸频率。通过与医用重症监护仪进行对比实验验证所提算法的优越性和鲁棒性。实验结果表明,所提算法相较于小波变换(WT)算法、CEEMD(Complementary Ensemble Empirical Mode Decomposition)算法和VMD(Variational Mode Decomposition)算法,均方误差(MSE)分别减小了77.65、27.25和21.05,平均绝对百分比(MAPE)分别减小了7.33、4.33和3.42个百分点,实时性分别提高了0.72 s, 16.74 s和1.87 s。同时,利用所提算法也实现了对心率变异性(HRV)的检测。 展开更多
关键词 毫米波雷达 经验小波变换 生命体征 心率变异性 麻雀搜索算法
下载PDF
基于CEEMD-IDWT的受载煤岩微震电压去噪算法
10
作者 李鑫 刘志勇 +4 位作者 杨桢 李昊 周婧 卜婧然 王艺儒 《电子测量与仪器学报》 CSCD 北大核心 2024年第8期124-136,共13页
受载复合煤岩变形破裂过程中产生的微小震动信号包含煤岩内部结构破裂信息,传统设备采集的微震信号存在大量环境噪声而无法直接进行分析。为有效提取受载煤岩变形破裂过程微震信号的变化特征,采用互补集合经验模态分解算法(CEEMD)与改进... 受载复合煤岩变形破裂过程中产生的微小震动信号包含煤岩内部结构破裂信息,传统设备采集的微震信号存在大量环境噪声而无法直接进行分析。为有效提取受载煤岩变形破裂过程微震信号的变化特征,采用互补集合经验模态分解算法(CEEMD)与改进dmey小波(IDWT)算法相融合,提出一种新型CEEMD-IDWT联合去噪算法。该算法首先利用CEEMD算法对原始信号进行分解,然后对分解得到的IMF分量应用IDWT算法进行去噪处理,最终将处理过的分量进行重构得到去噪信号。利用仿真分析和单轴压缩实验对该算法的有效性进行验证,结果表明:CEEMD-IDWT联合算法在仿真分析中,相比传统算法信噪比最大提高204.5%,对于其他改进去噪算法信噪比最少提高11.8%,去噪能力具有明显优势;将该算法嵌入自研微震电压采集设备,在复合煤岩单轴压缩实验中得到的微震电压信号噪噪比仅为0.08975,实际去噪效果明显;经CEEMD-IDWT联合算法去噪之后的微震电压具有明显的变化特征,显著提升了信号去噪效果,有效避免了微震电压信号的失真,可以作为受载煤岩变形破裂微震电压信号去噪处理的理想算法,为煤岩动力灾害的准确预判提供了一种可靠且先进的技术参考。 展开更多
关键词 受载煤岩 微震电压 互补集合经验模态分解 改进dmey小波 去噪算法
下载PDF
基于EMD-PSO-BP模型的短期潮流流速预测
11
作者 邵萌 潘正中 +2 位作者 孙金伟 邵珠晓 伊传秀 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第11期134-141,共8页
针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原... 针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原始流速序列进行EMD分解,得到多个本征模函数(Intrinsic mode function,IMF)和残差。然后,利用PSO改进BP神经网络,对分解所得的IMF和残差分别进行预测。最后,将各个预测结果相结合,得出流速的最终预测结果,从而提高潮流流速的预测精度。本文以江苏省潮流流速为例,分别建立BP、PSO-BP、EMD-BP以及EMD-PSO-BP四类预测模型,以对潮流流速进行预测和对比分析。结果表明,相较于其他模型,EMD-PSO-BP预测模型在潮流流速的预测方面具有更高的精度,为潮流能开发提供重要的数据支撑。 展开更多
关键词 潮流流速预测 经验模态分解 反向传播神经网络 粒子群优化算法 本征模函数
下载PDF
基于CEEMDAN-VSSLMS的滚动轴承故障诊断
12
作者 江莉 向世召 《计算机集成制造系统》 EI CSCD 北大核心 2024年第3期1138-1148,共11页
针对传统机械轴承故障诊断模型易受系统噪声干扰、特征识别效率低等问题,提出一种基于信号固有模式深度建模分析的轴承故障诊断方法。首先,将采集到的轴承振动信号进行噪声自适应完全经验模态分解(CEEMDAN),获得不同时间尺度的局部特征... 针对传统机械轴承故障诊断模型易受系统噪声干扰、特征识别效率低等问题,提出一种基于信号固有模式深度建模分析的轴承故障诊断方法。首先,将采集到的轴承振动信号进行噪声自适应完全经验模态分解(CEEMDAN),获得不同时间尺度的局部特征信号,使用相关系数判别并去除虚假模态分量,再利用可变步长最小均方算法(VSSLMS)对剩余IMF分量降噪并进行重构;然后,将降噪后的振动信号进行离散小波变换(DWT)得到时频谱图,并利用形态学开运算进行特征增强;最后利用改进GoogLeNet网络模型对特征图进行训练,通过Softmax分类器完成特征归类,从而实现轴承故障诊断。将提出的故障诊断方法应用于不同工况下的轴承故障数据集,试验结果表明,所提方法在噪声干扰下具有较高的诊断精度。 展开更多
关键词 轴承故障诊断 经验模态分解 最小均方算法 离散小波变换 GoogLeNet模型
下载PDF
基于双模态分解的发电站母线短期负荷预测
13
作者 刘昕明 吉建光 +1 位作者 李玮 石光磁 《电气工程学报》 CSCD 北大核心 2024年第1期124-132,共9页
母线负荷预测是电力系统运营和规划中至关重要的一项任务,针对电力负荷数据的非线性强以及影响因素多等问题,提出了一种基于双模态分解、深度学习和注意力机制的负荷预测模型。首先,对输入数据进行经验模态分解(Empirical mode decompos... 母线负荷预测是电力系统运营和规划中至关重要的一项任务,针对电力负荷数据的非线性强以及影响因素多等问题,提出了一种基于双模态分解、深度学习和注意力机制的负荷预测模型。首先,对输入数据进行经验模态分解(Empirical mode decomposition,EMD),通过K-means聚类分析对复杂度相似的分量进行集合得到三个组合分量。其次,使用变分模态分解(Variational mode decomposition, VMD)对组合分量再次进行分解得到不同分量,使用麻雀搜索算法(Sparrow search algorithm,SSA)对变分模态分解的参数进行优化。再次,将变分模态分解得到的分量与影响因素连接并输入长短期记忆网络(Long short-term memory network, LSTM),通过注意力机制挖掘数据内部的相关性,并使用SSA对LSTM网络的参数进行优化。最后,采用宁夏某电站一年的负荷数据进行验证,经过与不同模型的对比分析,所提模型有更高的预测精度。 展开更多
关键词 负荷预测 经验模态分解 麻雀搜索算法 变分模态分解 长短期记忆网络 注意力机制
下载PDF
暖通空调小流量风机机械振动信号自适应采集研究
14
作者 董宇毅 《自动化与仪表》 2024年第2期40-44,共5页
当暖通空调小流量风机运行时,频繁产生的脉冲噪声增加了信号采集的复杂性并引入了干扰,使得采集到的振动信号含有大量不必要的噪声成分,降低了采集精度和准确性。为此,提出暖通空调小流量风机机械振动信号自适应采集方法。使用经验模态... 当暖通空调小流量风机运行时,频繁产生的脉冲噪声增加了信号采集的复杂性并引入了干扰,使得采集到的振动信号含有大量不必要的噪声成分,降低了采集精度和准确性。为此,提出暖通空调小流量风机机械振动信号自适应采集方法。使用经验模态分解方法对振动信号进行处理,获得信号在时域和频域上的特征信息。根据振动信号的频率特征,设计自适应变采样算法在不同的时间段内动态地调整采样率,采集风机振动信号。使用数学形态滤波器调整信号的形状,去除脉冲干扰以提高采集信号的精度,并进一步优化信号的质量。实验结果表明,所提方法的振动信号自适应采集精度高,且采集时间短。 展开更多
关键词 暖通空调小流量风机 振动信号 自适应采样算法 经验模态分解 数学形态滤波器
下载PDF
基于特征判定系数的电力变压器振动信号故障诊断
15
作者 谢丽蓉 严侣 +1 位作者 吐松江·卡日 张馨月 《电力工程技术》 北大核心 2024年第3期217-225,共9页
变压器带电故障诊断对于保证电力变压器安全平稳运行具有重要的意义。针对变压器工作环境复杂且单一参数表征变压器故障类型不全面的问题,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposit... 变压器带电故障诊断对于保证电力变压器安全平稳运行具有重要的意义。针对变压器工作环境复杂且单一参数表征变压器故障类型不全面的问题,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和特征熵权法(entropy weight method,EWM)进行故障诊断的方法。通过相关系数与峭度加权(correlation coefficient and weighted kurtosis,CCWK)原则筛选CEEMDAN分量并重构信号,在实现剔除冗余分量的同时,提升变压器振动信号特征的表征能力;利用EWM构建特征判定系数实现单一数据诊断变压器故障类型;通过主成分分析法减小混合域特征尺度,采用鸡群优化算法优化支持向量机(support vector machine,SVM)模型进行故障诊断。对某变电站110 kV三相油浸式变压器进行分析,结果表明与概率神经网络和SVM等变压器故障诊断方法相比,文中方法能在提前定性故障类型的同时,进一步提高变压器故障诊断的准确率与效率。 展开更多
关键词 故障诊断 变压器振动信号 自适应噪声完备集合经验模态分解(CEEMDAN) 信噪比 熵权法(EWM) 支持向量机(SVM) 鸡群优化算法
下载PDF
基于经验模态分解和优化BiLSTM的短期负荷预测
16
作者 骆东松 魏義民 张杰锋 《机械与电子》 2024年第9期11-17,共7页
针对电力负荷数据的非线性和不稳定性问题,提出了一种基于经验模态分解改进麻雀搜索算法双向长短期记忆神经网络相结合的EMD ISSA BiLSTM预测模型。首先采用EMD处理非线性负荷数据,将原始负荷数据分解为多个不同尺度的本征模态函数(IMF)... 针对电力负荷数据的非线性和不稳定性问题,提出了一种基于经验模态分解改进麻雀搜索算法双向长短期记忆神经网络相结合的EMD ISSA BiLSTM预测模型。首先采用EMD处理非线性负荷数据,将原始负荷数据分解为多个不同尺度的本征模态函数(IMF),引入反向学习策略和Levy飞行策略分别改进麻雀搜索算法(SSA)的收敛速度慢和容易陷入局部最优问题,利用改进麻雀搜索算法(ISSA)对BiLSTM神经网络进行参数寻优。然后再利用优化后的BiLSTM模型对每个分量进行预测,并将各预测结果叠加组合,得到整个负荷序列的预测结果。最后通过实际算例分析,证明该方法相对于传统的预测方法具有更好的预测精度和稳定性,可作为一种有效的短期负荷预测方法。 展开更多
关键词 电力系统 负荷预测 经验模态分解 麻雀搜索算法 双向长短时记忆神经网络
下载PDF
基于改进最小二乘支持向量机组合模型的深基坑沉降变形预测 被引量:1
17
作者 刘清龙 吕颖慧 +1 位作者 秦磊 赵鹏 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第1期8-14,共7页
为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量... 为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量机进行参数寻优,对分解的数据分别训练、预测后再叠加,得到最终预测结果;应用所提出模型对济南市某深基坑的累积沉降量进行预测,同时与其他模型对比,验证所提出模型的实用性和优越性。结果表明:所提出模型预测深基坑累积沉降量的平均相对误差为0.035%,均方误差为0.0809 mm^(2),均方根误差为0.2838 mm,所提出模型的准确性远优于其他模型的;自适应噪声完备集合经验模态分解方法的引入更有利于在深基坑沉降变形预测方面发挥最小二乘支持向量机的优势。 展开更多
关键词 深基坑沉降变形 最小二乘支持向量机 经验模态分解 粒子群优化算法 遗传算法
下载PDF
基于Hilbert包络谱熵和GA-SVM的水轮发电机轴承故障诊断 被引量:2
18
作者 陈培演 孙晓 +2 位作者 欧立涛 于柳 陈元健 《机电工程技术》 2024年第3期199-204,共6页
水轮发电机轴承在运行时承受着整体机组的轴向负荷与复杂水推力,针对其产生的非稳态、非线性特征的振动信号,提出一种基于Hilbert包络谱分析与遗传算法支持向量机(GA-SVM)相结合的诊断方法,用于轴承故障状态的识别。首先对推力轴承运行... 水轮发电机轴承在运行时承受着整体机组的轴向负荷与复杂水推力,针对其产生的非稳态、非线性特征的振动信号,提出一种基于Hilbert包络谱分析与遗传算法支持向量机(GA-SVM)相结合的诊断方法,用于轴承故障状态的识别。首先对推力轴承运行时产生的振动信号进行集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD),分解成若干个固有模态函数(Intrinsic Mode Function,IMF),依据峭度准则选取主要IMF分量并通过Hilbert包络谱分析,计算包络谱熵,将归一化后的包络谱熵作为特征向量输入GA-SVM进行训练与故障识别。仿真实验结果表明,基于EEMD包络谱熵分析法相比于时频域图像处理能更好地提取出复杂工况下的故障信号特征,遗传算法支持向量机识别准确率达96.87%,该算法模型可进一步应用于水轮发电机轴承故障诊断。 展开更多
关键词 水轮发电机 轴承故障诊断 集合经验模态分解 Hilbert包络谱熵 遗传算法支持向量机
下载PDF
雨刮-风窗摩擦噪声声品质主动控制自适应均衡算法 被引量:1
19
作者 范会志 郭辉 +3 位作者 冯庆宝 孙裴 王岩松 陆仲辉 《振动与冲击》 EI CSCD 北大核心 2024年第8期263-271,共9页
雨刮-风窗摩擦噪声是影响车内声品质的重要因素之一,对其声品质主动控制有利于改善车内声学环境。为了实现对雨刮-风窗摩擦噪声声品质主动控制,提出一种基于集合经验模态分解的权重约束自适应噪声均衡(ensemble-empirical-mode-decompos... 雨刮-风窗摩擦噪声是影响车内声品质的重要因素之一,对其声品质主动控制有利于改善车内声学环境。为了实现对雨刮-风窗摩擦噪声声品质主动控制,提出一种基于集合经验模态分解的权重约束自适应噪声均衡(ensemble-empirical-mode-decomposition weight constrained adaptive noise equalizer,EWCANE)算法。首先通过集合经验模态分解(ensemble empirical mode decomposition,EEMD)方法分解雨刮-风窗摩擦噪声得到非平稳度较低的固有模式函数分量,计算各分量的方差比以表征各分量对噪声的影响程度;然后基于输入信号和误差信号的欧式范数以自适应对滤波器权重进行约束来降低噪声的瞬态冲击;最后根据方差比调整声音增益因子以均衡各分量的声品质主动控制。经过仿真验证,实车雨刮-风窗摩擦噪声信号响度得到有效降低,改善了雨刮-风窗摩擦噪声的声品质。 展开更多
关键词 雨刮-风窗 声品质主动控制 集合经验模态分解(EEMD) 自适应噪声均衡(ANE)算法
下载PDF
基于ICEEMDAN分解与SE重构和DBO-LSTM的滑坡位移预测 被引量:1
20
作者 封青青 李丽敏 +2 位作者 陈飞阳 张碧涵 余兵 《电子测量技术》 北大核心 2024年第7期80-87,共8页
滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网... 滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网络(LSTM)组合模型进行位移预测。以八字门滑坡为研究对象,利用ICEEMDAN方法将滑坡累计位移进行分解,并用样本熵值表征分解得到的子序列,将其重构为趋势项和周期项位移。之后利用LSTM模型预测趋势项和周期项位移;通过灰色关联度的方法确定周期项位移的影响因素。考虑到LSTM网络中超参数的随机性会影响模型预测精度,引入蜣螂优化算法获取LSTM最优超参数,最终将预测得到的趋势项和周期项位移叠加得到累计位移。本文所提的ICEEMDAN-SE-DBO-LSTM模型预测周期项位移的RMSE、MAE、R23项指标分别为1.803 mm、1.584 mm、0.988,相较于DBO-BP,LSTM,GRU和BP模型预测效果更优,证明了模型的有效性。 展开更多
关键词 滑坡位移 改进的自适应噪声完备集合经验模态分解 样本熵 蜣螂优化算法
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部