A one-step band-limited extrapolation procedure is systematically developed under an a priori assumption of bandwidth. The rationale of the proposed scheme is to expand the known signal segment based on a band-limited...A one-step band-limited extrapolation procedure is systematically developed under an a priori assumption of bandwidth. The rationale of the proposed scheme is to expand the known signal segment based on a band-limited basis function set and then to generate a set of Empirical Orthogonal Functions (EOF’s) adaptively from the sample values of the band-limited function set. Simulation results indicate that, in addi- tion to the attractive adaptive feature, this scheme also appears to guarantee a smooth result for inexact data, thus suggesting the robustness of the proposed procedure.展开更多
Two kinds of the empirical orthogonal function analysis method for decomposing the mean-field are developed and a comparison is made between them. It is proved that the mean-field can be decomposed using eigenvectors ...Two kinds of the empirical orthogonal function analysis method for decomposing the mean-field are developed and a comparison is made between them. It is proved that the mean-field can be decomposed using eigenvectors obtained from anomaly-field decomposition, and that more information can be obtained. An example of sea bottom mean temperature analysis shows its remarhabk effect in depicting the distribution features of variousfactors, such as cold water mass, currents and radiation.A few problems concerning the efficiency of the method are discussedand two matrices of relationship which represent the space-time characteristics of the field are derived. The formulae of space-time transformation are obtained conveniently.展开更多
To analyze the dynamic mechanism of unusual activities of the subtropical high, the space-time varible separation of the partial differential vortex equations is carried out with Galerkin methods based on the heat for...To analyze the dynamic mechanism of unusual activities of the subtropical high, the space-time varible separation of the partial differential vortex equations is carried out with Galerkin methods based on the heat force and the whirl movement dissipation effect. Aiming at the subjective and man-made conventional method of choice in the space basis functions, we propose to combine the empirical orthogonal function (EOF) analysis with the genetic algorithm to inverse the space basis functions from the actual sequence of fields. A group of trigonometric functions are chosen as a generalized space basis function. With the least-squares error of the basis function and EOF typical fields, and with the complete orthogonality of basis functions, we can get the dual-bound function. A genetic algorithm is then introduced to carry out surface fitting and coefficient optimization of the basis function. As a result, the objective and reasonable constant differential equation of the subtropical high is obtained by inversion. Finally, based on the obtained nonlinear dynamics model, the dynamic behavior and mechanism of the subtropical high is analyzed and discussed under the influence of heat force. We find that solar radiation and zonal differences in land and sea are important factors impacting the potential field and flow field changes of the subtropical areas. These factors lead to strength changes of the subtropical high and medium-term advance/retreat activities. The former is a gradual change, while the latter shows more break characteristics. Meaningful results are obtained in the analysis.展开更多
文摘A one-step band-limited extrapolation procedure is systematically developed under an a priori assumption of bandwidth. The rationale of the proposed scheme is to expand the known signal segment based on a band-limited basis function set and then to generate a set of Empirical Orthogonal Functions (EOF’s) adaptively from the sample values of the band-limited function set. Simulation results indicate that, in addi- tion to the attractive adaptive feature, this scheme also appears to guarantee a smooth result for inexact data, thus suggesting the robustness of the proposed procedure.
文摘Two kinds of the empirical orthogonal function analysis method for decomposing the mean-field are developed and a comparison is made between them. It is proved that the mean-field can be decomposed using eigenvectors obtained from anomaly-field decomposition, and that more information can be obtained. An example of sea bottom mean temperature analysis shows its remarhabk effect in depicting the distribution features of variousfactors, such as cold water mass, currents and radiation.A few problems concerning the efficiency of the method are discussedand two matrices of relationship which represent the space-time characteristics of the field are derived. The formulae of space-time transformation are obtained conveniently.
基金supported by the Joint Plan to Subsidize Innovative Young Scholars of the Chinese Academy of Sciences (No. IAP09305)
文摘To analyze the dynamic mechanism of unusual activities of the subtropical high, the space-time varible separation of the partial differential vortex equations is carried out with Galerkin methods based on the heat force and the whirl movement dissipation effect. Aiming at the subjective and man-made conventional method of choice in the space basis functions, we propose to combine the empirical orthogonal function (EOF) analysis with the genetic algorithm to inverse the space basis functions from the actual sequence of fields. A group of trigonometric functions are chosen as a generalized space basis function. With the least-squares error of the basis function and EOF typical fields, and with the complete orthogonality of basis functions, we can get the dual-bound function. A genetic algorithm is then introduced to carry out surface fitting and coefficient optimization of the basis function. As a result, the objective and reasonable constant differential equation of the subtropical high is obtained by inversion. Finally, based on the obtained nonlinear dynamics model, the dynamic behavior and mechanism of the subtropical high is analyzed and discussed under the influence of heat force. We find that solar radiation and zonal differences in land and sea are important factors impacting the potential field and flow field changes of the subtropical areas. These factors lead to strength changes of the subtropical high and medium-term advance/retreat activities. The former is a gradual change, while the latter shows more break characteristics. Meaningful results are obtained in the analysis.