Many problems in rock engineering are limited by our imperfect knowledge of the material properties and failure mechanics of rock masses. Mining problems are somewhat unique, however, in that plenty of real world expe...Many problems in rock engineering are limited by our imperfect knowledge of the material properties and failure mechanics of rock masses. Mining problems are somewhat unique, however, in that plenty of real world experience is generally available and can be turned into valuable experimental data.Every pillar that is developed, or stope that is mined, represents a full-scale test of a rock mechanics design. By harvesting these data, and then using the appropriate statistical techniques to interpret them,mining engineers have developed powerful design techniques that are widely used around the world.Successful empirical methods are readily accepted because they are simple, transparent, practical, and firmly tethered to reality. The author has been intimately associated with empirical design for his entire career, but his previous publications have described the application of individual techniques to specific problems. The focus of this paper is the process used to develop a successful empirical method. A sixstage process is described: identification of the problem, and of the end users of the final product; development of a conceptual rock mechanics model, and identification of the key parameters in that model;identification of measures for each of the key parameters, and the development of new measures(such as rating scales) where necessary; data sources and data collection; statistical analysis; and packaging of the final product. Each of these stages has its own potential rewards and pitfalls, which will be illustrated by incidents from the author's own experience. The ultimate goal of this paper is to provide a new and deeper appreciation for empirical techniques, as well as some guidelines and opportunities for future developers.展开更多
Suppose that several different imperfect instruments and one perfect instrument are independently used to measure some characteristics of a population. Thus, measurements of two or more sets of samples with varying ac...Suppose that several different imperfect instruments and one perfect instrument are independently used to measure some characteristics of a population. Thus, measurements of two or more sets of samples with varying accuracies are obtained. Statistical inference should be based on the pooled samples. In this article, the authors also assumes that all the imperfect instruments are unbiased. They consider the problem of combining this information to make statistical tests for parameters more relevant. They define the empirical likelihood ratio functions and obtain their asymptotic distributions in the presence of measurement error.展开更多
The offshore pipeline network in the U.S. Gulf of Mexico is the largest and most transparent system in the world. A review of deepwater projects in the region provides insight into construction cost and installation m...The offshore pipeline network in the U.S. Gulf of Mexico is the largest and most transparent system in the world. A review of deepwater projects in the region provides insight into construction cost and installation methods and the evolution of contract strategies. Pipeline projects are identified as export systems, infield flowline systems, and combined export and infield systems, and three dozen deepwater pipeline installations from 1980–2014 are described based on Offshore Technology Conference(OTC) and Society of Petroleum Engineers(SPE) industry publications and press release data. Export lines and infield flowlines are equally represented and many projects used a combination of J-lay, S-lay and reel methods with rigid steel, flexible line, and pipe-in-pipe systems. The average 2014 inflation-adjusted cost for pipeline projects based on OTC/SPE publications was $2.76 million/mi and ranged from $520 000/mi to $12.94 million/mi. High cost pipelines tend to be short segments or specialized pipeline. Excluding the two cost endpoints, the majority of projects ranged from $1 to $6 million/mi. The average inflation-adjusted cost to install deepwater pipelines in the U.S. Gulf of Mexico based on available public data is estimated at $3.1 million/mi.展开更多
Empirical likelihood(EL) combined with estimating equations(EE) provides a modern semi-parametric alternative to classical estimation techniques such as maximum likelihood estimation(MLE). This paper not only uses clo...Empirical likelihood(EL) combined with estimating equations(EE) provides a modern semi-parametric alternative to classical estimation techniques such as maximum likelihood estimation(MLE). This paper not only uses closed form of conditional expectation and conditional variance of Logistic equation with random perturbation to perform maximum empirical likelihood estimation(MELE) for the model parameters, but also proposes an empirical likelihood ratio statistic(ELRS) for hypotheses concerning the interesting parameter. Monte Carlo simulation results show that MELE and ELRS provide competitive performance to parametric alternatives.展开更多
In competition with other resources,ocean waves provide abundant supply of clean,safe,and reliable energy,but this source needs to be made an economical source for natural energy harvest.For this purpose,a wave energy...In competition with other resources,ocean waves provide abundant supply of clean,safe,and reliable energy,but this source needs to be made an economical source for natural energy harvest.For this purpose,a wave energy conversion device is developed through various mechanisms by using ocean fluctuations that affect the ecosystems.The study was developed for the user to reduce the need for profitability of competitive balance and to support decision-makers who govern the equations for identifying locations for wave energy conversion facilities.Our model of wave energy harvesting is based on the analysis of the wave energy facility to quantify the net present value(NPV)of capital investment and evaluation.The proposed model has a local,regional,and flexible framework that can be applied even to the global scale for the wave energy conversion projects.The proposed model can be applied to the ongoing marine spatial planning.Specifically,the applications and ecological characteristics with an existing data collected by laboratory experiments and filed investigations,and the work of the various studies of the quantitative analysis of the compatibility of the commercial fishery data analysis spatial overlap.According to the empirical statistics,we found that the waves of the ocean around the west of Taiwan Island,had a great potential for high harvest,and offshore wave energy gradually increased.However,it comes to have an area of high economic potential whilst taking advantage of wave energy equipment to support the acquisition of a number of different coastal energy,the cost of the landing point of the submarine cable.The NPV is maximized if the conflict of use agreement is in place in the existing sea area.It is possible to build a wave energy facility in order to minimize the maximum composite wave energy and other economic uses.The high possibility of building the facility benefits the goal of this research.By mapping the wave energy,the governing equations of the study can assist decision-makers to use NPV to explore an alternative location for wave energy conversion facilities in order to reap the maximum returns.It is expected that the high potential areas would not be exploited in the race of capturing the existing marine space.展开更多
Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961-2005 were analyzed applying Mann-K...Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961-2005 were analyzed applying Mann-Kendall test method on the basis of the hydrologic data of the major hydrological station (Xiahui Station) located at the outlet of the drainage basin and the meteorological data of 17 rainfall stations. Human activities including water conservancy projects construction and water diversion as well as implementation of soil and water conservation from 1961 to 2005 were carefully studied using time series contrasting method. The referenced period (1961-1980) that influenced slightly by human activities and the compared period (1981-2005) that influenced significantly by water conservancy and soil conservation measures were identified according to the runoff variation process analysis and abrupt change points detection during 1961-2005 applying double accumulative curve method, mean shift t-test method and Mann-Kendall mutation test technique. Based on the establishment of a rainfall-runoff empirical statistical model, impacts and the runoff-reducing effects of water conservancy and soil conservation measures on runoff reduction were evaluated quantitatively. The major results could be summarized as follows: (1) The annual precipitation in the drainage basin tends to decrease while the runoff has declined markedly since the 1960s, the average annual runoff from 1991 to 2000 was only 90.9% in proportion to that from 1961 to 1970. (2) The annual runoff variations in the drainage basin are significantly related to human activities. (3) During 1981-1990, 1991-2000, 2001-2005 and 1981-2005, the average annual runoff reduction amounts were 1.15×10^8, 0.28×10^8, 1.10×10^8 and 0.79×10^8 m^3 respectively and the average annual runoff-reducing effects were 31.99%, 7.13%, 40.71% and 23.79% accordingly. Runoff-reducing effects by water conservancy and soil conservation measures are more prominent in the low water period.展开更多
文摘Many problems in rock engineering are limited by our imperfect knowledge of the material properties and failure mechanics of rock masses. Mining problems are somewhat unique, however, in that plenty of real world experience is generally available and can be turned into valuable experimental data.Every pillar that is developed, or stope that is mined, represents a full-scale test of a rock mechanics design. By harvesting these data, and then using the appropriate statistical techniques to interpret them,mining engineers have developed powerful design techniques that are widely used around the world.Successful empirical methods are readily accepted because they are simple, transparent, practical, and firmly tethered to reality. The author has been intimately associated with empirical design for his entire career, but his previous publications have described the application of individual techniques to specific problems. The focus of this paper is the process used to develop a successful empirical method. A sixstage process is described: identification of the problem, and of the end users of the final product; development of a conceptual rock mechanics model, and identification of the key parameters in that model;identification of measures for each of the key parameters, and the development of new measures(such as rating scales) where necessary; data sources and data collection; statistical analysis; and packaging of the final product. Each of these stages has its own potential rewards and pitfalls, which will be illustrated by incidents from the author's own experience. The ultimate goal of this paper is to provide a new and deeper appreciation for empirical techniques, as well as some guidelines and opportunities for future developers.
基金This work is supported by NNSF of China (10571093)
文摘Suppose that several different imperfect instruments and one perfect instrument are independently used to measure some characteristics of a population. Thus, measurements of two or more sets of samples with varying accuracies are obtained. Statistical inference should be based on the pooled samples. In this article, the authors also assumes that all the imperfect instruments are unbiased. They consider the problem of combining this information to make statistical tests for parameters more relevant. They define the empirical likelihood ratio functions and obtain their asymptotic distributions in the presence of measurement error.
基金provided through the U.S. Department of the Interior, Bureau of Ocean Energy Management
文摘The offshore pipeline network in the U.S. Gulf of Mexico is the largest and most transparent system in the world. A review of deepwater projects in the region provides insight into construction cost and installation methods and the evolution of contract strategies. Pipeline projects are identified as export systems, infield flowline systems, and combined export and infield systems, and three dozen deepwater pipeline installations from 1980–2014 are described based on Offshore Technology Conference(OTC) and Society of Petroleum Engineers(SPE) industry publications and press release data. Export lines and infield flowlines are equally represented and many projects used a combination of J-lay, S-lay and reel methods with rigid steel, flexible line, and pipe-in-pipe systems. The average 2014 inflation-adjusted cost for pipeline projects based on OTC/SPE publications was $2.76 million/mi and ranged from $520 000/mi to $12.94 million/mi. High cost pipelines tend to be short segments or specialized pipeline. Excluding the two cost endpoints, the majority of projects ranged from $1 to $6 million/mi. The average inflation-adjusted cost to install deepwater pipelines in the U.S. Gulf of Mexico based on available public data is estimated at $3.1 million/mi.
基金supported by the National Natural Science Foundation of China under Grant No.11101452the Natural Science Foundation Project of CQ CSTC under Grant No.2012jjA00035the National Basic Research Program of China under Grant No.2011CB808000
文摘Empirical likelihood(EL) combined with estimating equations(EE) provides a modern semi-parametric alternative to classical estimation techniques such as maximum likelihood estimation(MLE). This paper not only uses closed form of conditional expectation and conditional variance of Logistic equation with random perturbation to perform maximum empirical likelihood estimation(MELE) for the model parameters, but also proposes an empirical likelihood ratio statistic(ELRS) for hypotheses concerning the interesting parameter. Monte Carlo simulation results show that MELE and ELRS provide competitive performance to parametric alternatives.
文摘In competition with other resources,ocean waves provide abundant supply of clean,safe,and reliable energy,but this source needs to be made an economical source for natural energy harvest.For this purpose,a wave energy conversion device is developed through various mechanisms by using ocean fluctuations that affect the ecosystems.The study was developed for the user to reduce the need for profitability of competitive balance and to support decision-makers who govern the equations for identifying locations for wave energy conversion facilities.Our model of wave energy harvesting is based on the analysis of the wave energy facility to quantify the net present value(NPV)of capital investment and evaluation.The proposed model has a local,regional,and flexible framework that can be applied even to the global scale for the wave energy conversion projects.The proposed model can be applied to the ongoing marine spatial planning.Specifically,the applications and ecological characteristics with an existing data collected by laboratory experiments and filed investigations,and the work of the various studies of the quantitative analysis of the compatibility of the commercial fishery data analysis spatial overlap.According to the empirical statistics,we found that the waves of the ocean around the west of Taiwan Island,had a great potential for high harvest,and offshore wave energy gradually increased.However,it comes to have an area of high economic potential whilst taking advantage of wave energy equipment to support the acquisition of a number of different coastal energy,the cost of the landing point of the submarine cable.The NPV is maximized if the conflict of use agreement is in place in the existing sea area.It is possible to build a wave energy facility in order to minimize the maximum composite wave energy and other economic uses.The high possibility of building the facility benefits the goal of this research.By mapping the wave energy,the governing equations of the study can assist decision-makers to use NPV to explore an alternative location for wave energy conversion facilities in order to reap the maximum returns.It is expected that the high potential areas would not be exploited in the race of capturing the existing marine space.
文摘Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961-2005 were analyzed applying Mann-Kendall test method on the basis of the hydrologic data of the major hydrological station (Xiahui Station) located at the outlet of the drainage basin and the meteorological data of 17 rainfall stations. Human activities including water conservancy projects construction and water diversion as well as implementation of soil and water conservation from 1961 to 2005 were carefully studied using time series contrasting method. The referenced period (1961-1980) that influenced slightly by human activities and the compared period (1981-2005) that influenced significantly by water conservancy and soil conservation measures were identified according to the runoff variation process analysis and abrupt change points detection during 1961-2005 applying double accumulative curve method, mean shift t-test method and Mann-Kendall mutation test technique. Based on the establishment of a rainfall-runoff empirical statistical model, impacts and the runoff-reducing effects of water conservancy and soil conservation measures on runoff reduction were evaluated quantitatively. The major results could be summarized as follows: (1) The annual precipitation in the drainage basin tends to decrease while the runoff has declined markedly since the 1960s, the average annual runoff from 1991 to 2000 was only 90.9% in proportion to that from 1961 to 1970. (2) The annual runoff variations in the drainage basin are significantly related to human activities. (3) During 1981-1990, 1991-2000, 2001-2005 and 1981-2005, the average annual runoff reduction amounts were 1.15×10^8, 0.28×10^8, 1.10×10^8 and 0.79×10^8 m^3 respectively and the average annual runoff-reducing effects were 31.99%, 7.13%, 40.71% and 23.79% accordingly. Runoff-reducing effects by water conservancy and soil conservation measures are more prominent in the low water period.