Aim: The oral cavity has the particularity to host multiple hard and soft tissues, in this paper, we will discuss the current therapies that lead to cell differentiation by regenerative therapies and the future altern...Aim: The oral cavity has the particularity to host multiple hard and soft tissues, in this paper, we will discuss the current therapies that lead to cell differentiation by regenerative therapies and the future alternatives proposed by medicinal plants and all the regenerative potential of these different tissues. Material and Methods: A detailed review of the literature through the various search engines: Scopus, PubMed, google scholar, Cochrane, etc., uses the selected keywords to explore the effect of the regenerative potential of several medicinal plants. Results: Through our research, we have proceeded to sort different medicinal plants, according to their repairing and regenerative potential on the different tissues of the oral cavity. Conclusion: Future studies are conceivable to explore the opportunities and potential provided by medicinal plants in the field of regenerative dentistry.展开更多
Background Enamel decalcification in orthodontics is a concern for dentists and methods to remineralize these lesions are the focus of intense research. The aim of this study was to evaluate the remineralizing effect ...Background Enamel decalcification in orthodontics is a concern for dentists and methods to remineralize these lesions are the focus of intense research. The aim of this study was to evaluate the remineralizing effect of casein phosphopeptide amorphous calcium phosphate (CPP-ACP) nanocomplexes on enamel decalcification in orthodontics. Methods Twenty orthodontic patients with decalcified enamel lesions during fixed orthodontic therapy were recruited to this study as test group and twenty orthodontic patients with the similar condition as control group. GC Tooth Mousse, the main component of which is CPP-ACP, was used by each patient of test group every night after tooth-brushing for six months. For control group, each patient was asked to brush teeth with toothpaste containing 1100 parts per million (ppm) of fluoride twice a day. Standardized intraoral images were taken for all patients and the extent of enamel decalcification was evaluated before and after treatment over this study period. Measurements were statistically compared by t test. Results After using CPP-ACP for six months, the enamel decalcification index (EDI) of all patients had decreased; the mean EDI before using CPP-ACP was 0.191+0.025 and that after using CPP-ACP was 0.183+0.023, the difference was significant (t=5.169, P 〈0.01). For control group, the mean EDI before treatment was 0.188±0.037 and that after treatment was 0.187±0.046, the difference was not significant (t=1.711, P 〉0.05). Conclusion CPP-ACP can effectively improve the demineralized enamel lesions during orthodontic treatment, so it has some remineralization potential for enamel decalcification in orthodontics.展开更多
文摘Aim: The oral cavity has the particularity to host multiple hard and soft tissues, in this paper, we will discuss the current therapies that lead to cell differentiation by regenerative therapies and the future alternatives proposed by medicinal plants and all the regenerative potential of these different tissues. Material and Methods: A detailed review of the literature through the various search engines: Scopus, PubMed, google scholar, Cochrane, etc., uses the selected keywords to explore the effect of the regenerative potential of several medicinal plants. Results: Through our research, we have proceeded to sort different medicinal plants, according to their repairing and regenerative potential on the different tissues of the oral cavity. Conclusion: Future studies are conceivable to explore the opportunities and potential provided by medicinal plants in the field of regenerative dentistry.
文摘Background Enamel decalcification in orthodontics is a concern for dentists and methods to remineralize these lesions are the focus of intense research. The aim of this study was to evaluate the remineralizing effect of casein phosphopeptide amorphous calcium phosphate (CPP-ACP) nanocomplexes on enamel decalcification in orthodontics. Methods Twenty orthodontic patients with decalcified enamel lesions during fixed orthodontic therapy were recruited to this study as test group and twenty orthodontic patients with the similar condition as control group. GC Tooth Mousse, the main component of which is CPP-ACP, was used by each patient of test group every night after tooth-brushing for six months. For control group, each patient was asked to brush teeth with toothpaste containing 1100 parts per million (ppm) of fluoride twice a day. Standardized intraoral images were taken for all patients and the extent of enamel decalcification was evaluated before and after treatment over this study period. Measurements were statistically compared by t test. Results After using CPP-ACP for six months, the enamel decalcification index (EDI) of all patients had decreased; the mean EDI before using CPP-ACP was 0.191+0.025 and that after using CPP-ACP was 0.183+0.023, the difference was significant (t=5.169, P 〈0.01). For control group, the mean EDI before treatment was 0.188±0.037 and that after treatment was 0.187±0.046, the difference was not significant (t=1.711, P 〉0.05). Conclusion CPP-ACP can effectively improve the demineralized enamel lesions during orthodontic treatment, so it has some remineralization potential for enamel decalcification in orthodontics.