期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
CUTTING TEMPERATURE MEASUREMENT IN HIGH-SPEED END MILLING 被引量:8
1
作者 全燕鸣 林金萍 王成勇 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第1期47-51,共5页
A computer aided measurement system is used to measure the cutting temperature directly in high-speed machining by natural thermocouples and standard thermocouples. In this system the tool/workpiece interface temperat... A computer aided measurement system is used to measure the cutting temperature directly in high-speed machining by natural thermocouples and standard thermocouples. In this system the tool/workpiece interface temperature is measured by the tool/workpiece natural thermocouple, while the temperature distribution on the workpiece surface and that of interior are measured by some standard thermocouples prearranged at proper positions. The system can be used to measure cutting temperature in the machining with the rotary cutting tools, such as vertical drill and end milling cutter. It is practically used for the research on high-speed milling with hardened steel. 展开更多
关键词 high-speed milling end milling cutter cutting temperature THERMOCOUPLE
下载PDF
Prediction and optimization of end milling process parameters of cast aluminium based MMC 被引量:3
2
作者 R.AROKIADASS K.PALANIRADJA N.ALAGUMOORTHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1568-1574,共7页
The machining characteristics of LM25 Al/SiCp composite using end milling was investigated.A comprehensive mathematical model was developed for correlating the interactive and higher order influences of various proces... The machining characteristics of LM25 Al/SiCp composite using end milling was investigated.A comprehensive mathematical model was developed for correlating the interactive and higher order influences of various process parameters on the dominant machining criteria,i.e.the tool flank wear phenomena,through response surface methodology,utilizing relevant experimental data obtained through experimentation.Experimental plan was performed by a standard response surface methodology design called a central composite design(CCD).The results of analysis of variance(ANOVA)indicate that the proposed mathematical model can adequately describe the performance within the limits of the studied factors.Optimal combination of these parameters can be used to achieve the minimum tool flank wear. 展开更多
关键词 end milling metal matrix composite(MMC) response surface methodology OPTIMIZATION
下载PDF
New Mathematical Method for the Determination of Cutter Runout Parameters in Flat-end Milling 被引量:2
3
作者 GUO Qiang SUN Yuwen +1 位作者 GUO Dongming ZHANG Chuantai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期947-952,共6页
The cutting force prediction is essential to optimize the process parameters of machining such as feed rate optimization, etc. Due to the significant influences of the runout effect on cutting force variation in milli... The cutting force prediction is essential to optimize the process parameters of machining such as feed rate optimization, etc. Due to the significant influences of the runout effect on cutting force variation in milling process, it is necessary to incorporate the cutter runout parameters into the prediction model of cutting forces. However, the determination of cutter runout parameters is still a challenge task until now. In this paper, cutting process geometry models, such as uncut chip thickness and pitch angle, are established based on the true trajectory of the cutting edge considering the cutter runout effect. A new algorithm is then presented to compute the cutter runout parameters for flat-end mill utilizing the sampled data of cutting forces and derived process geometry parameters. Further, three-axis and five-axis milling experiments were conducted on a machining centre, and resulting cutting forces were sampled by a three-component dynamometer. After computing the corresponding cutter runout parameters, cutter forces are simulated embracing the cutter runout parameters obtained from the proposed algorithm. The predicted cutting forces show good agreements with the sampled data both in magnitude and shape, which validates the feasibility and effectivity of the proposed new algorithm of determining cutter runout parameters and the new way to accurately predict cutting forces. The proposed method for computing the cutter runout parameters provides the significant references for the cutting force prediction in the cutting process. 展开更多
关键词 flat end milling cutter runout cutting force five-axis machining
下载PDF
Theoretical modeling of cutting temperature in high-speed end milling process for die/mold machining 被引量:4
4
作者 YingTang 《Journal of University of Science and Technology Beijing》 CSCD 2005年第1期90-95,共6页
A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating u... A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating under cutting and cooling under non-cutting. It shows that cutting speed and the tool-workpiece engagement condition are determinative for tool temperature in the operation. The suggested model was investigated by tests of AlTiN coated endmill machining hardened die steel JIS SKD61, where cutting temperature on the flank face of tool was measured with an optical fiber type radiation thermometer. Experimental results show that the tendency of cutting temperature to increase with cutting speed and engagement angle is intensified with the progressing tool wear. 展开更多
关键词 end milling cutting temperature intermittent cutting die/mold machining
下载PDF
Efficient and Stable Optimization of Multi‑pass End Milling Using a Cloud Drop‑Enabled Particle Swarm Optimization Algorithm 被引量:1
5
作者 CAI Xulin YANG Wenan HUANG Chao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第3期462-473,共12页
Optimization of machining parameters is of great importance for multi-pass end milling because machining parameters adversely or positively affect the time and quality of production.This paper develops a second-order ... Optimization of machining parameters is of great importance for multi-pass end milling because machining parameters adversely or positively affect the time and quality of production.This paper develops a second-order fulldiscretization method(2ndFDM)-based 3-D stability prediction model for simultaneous optimization of spindle speed,axial cutting depth and radial cutting depth.The optimal machining parameters in each pass are obtained to achieve the minimum production time comprehensive considering constraints of 3-D stability,machine tool performance,tool life and machining requirements.A cloud drop-enabled particle swarm optimization(CDPSO)algorithm is proposed to solve the developed machining parameter optimization,and 13 benchmark problems are used to evaluate CDPSO algorithm.Numerical results show that CDPSO algorithm has a certain advantage in computational cost as well as comparable search quality and robustness.A demonstrative example is provided. 展开更多
关键词 machining parameter multi-pass end milling chatter stability particle swarm optimization(PSO) cloud model
下载PDF
Study on End Milling Generation Surface Model and Simulation in View of Main Axle's Tolerance
6
作者 LI Shi-jie, LIU Riu-su, ZHANG Ai-jun (Department of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期39-,共1页
In accordance with the relative movement between end-milling cutter and workpiece surface, a theoretical generation model for milled surface was established with the movement error of principal axle considered. Then t... In accordance with the relative movement between end-milling cutter and workpiece surface, a theoretical generation model for milled surface was established with the movement error of principal axle considered. Then the milled surfaces under various cutting condition were simulated, the results of which showed that end milled surfaces were of "vaulted profile", heights of surface irregularty at various points to be different with maximum value in the middle and smaller at both sides, the difference were determined by diameter of milling cutter, feeding speed, ratio between the diameter of milling cutter and teeth point curve radius and width of workpiece. The study results can be applied to quality prediction of milled surfaces for precision and/or super precision milling operation. 展开更多
关键词 end milling milled surface generation model SIMULATION vaulted profile
下载PDF
Heat regulating strategy in numerical control end milling for hard metal machining
7
作者 YingTang YoshiakiKakino 《Journal of University of Science and Technology Beijing》 CSCD 2005年第2期187-191,共5页
The trend in die/mold manufacturing at present is towards the hard machining at high speed to replace the electron dis- charge machining. Failure forms of the AlTiN-coated micro-grain carbide endmill when used for th... The trend in die/mold manufacturing at present is towards the hard machining at high speed to replace the electron dis- charge machining. Failure forms of the AlTiN-coated micro-grain carbide endmill when used for the machining of JIS SKD61 (HRC 53), a widely used material in die/mold manufacturing, are investigated. The endmill shows a characteristic that tool life decreases greatly due to the chipping when overload occurs or the rapid increase of wear when over-heat accumulation in cutting edges. As a consequence of the investigation, a strategy to regulate heat generation in the end milling process is proposed. This is accomplished by controlling the cutting arc length, i.e. the length of each flute engaging workpiece in a cutting cycle. Case studies on the slot end milling and comer rounding are conducted. The results show that the proposed strategy suggests the optimal tool path as well as the optimal pitch between successive tool paths under the cutting time criterion. 展开更多
关键词 heat generation: end milling hard metal machining numerical control
下载PDF
Analysis of Cutting Force by End Milling Using Artificial ntelligence
8
《Journal of Mechanics Engineering and Automation》 2013年第8期517-521,共5页
The cutting forces during end milling process by using Genetic Algorithm are investigated in this paper. However, automated CNC (computer numerical control) programming by milling machine is intended to use for spec... The cutting forces during end milling process by using Genetic Algorithm are investigated in this paper. However, automated CNC (computer numerical control) programming by milling machine is intended to use for special required conditions of programming of tool path length, and analysis of cutting force and optimization of main parameters are presented. Some effective simplification of automated programming is done for cutting force. The cutting force is modelled and analyzed into mathematical simulations in order to optimize the main cutting parameters, also in this case tool path length, it is get as free trajectory. Optimization is carried out by using the Matlab/Genetic Algorithm method that excessively reduce the time and to optimize the main cutting parameters of machining. The number of experiments, measurements and results of cutting force (F~), are presented in 3D as well as in tables. In order to verify the accuracy of the 3 D simulation with optimization method, the results are compared in experimental and theoretical way. In other word, these results indicate directly that the optimized parameters are capable of machining the workpiece. Achieved results that are presented in this paper may in general help the new researcher as well as manufacturing industries of metal cutting. 展开更多
关键词 Cutting force CNC machine end milling Genetic Algorithm.
下载PDF
Investigation of Cutting Force by End Milling Operation
9
《Journal of Mechanics Engineering and Automation》 2014年第1期91-95,共5页
In this work, the cutting forces by end milling operation are analyzed. Therefore, the main parameters of cutting force as cutting speed, feed rate and depth of cut also are investigated in our case. The cutting force... In this work, the cutting forces by end milling operation are analyzed. Therefore, the main parameters of cutting force as cutting speed, feed rate and depth of cut also are investigated in our case. The cutting force is modelled and analyzed into mathematical Wolfram simulations in order to compare the results and in the same time achieve the best solutions. Theoretical results are carried out by using the regression method that required fulfilling the critter by Fisher. The number of experiment, measurements and results of cutting force are presented in 2D as well as 3D. In order to verify the accuracy of the 2D diagram, the results for our case is used both two way such as experimental and theoretical method as well as results are compared. In other hands, these results indicate directly that the optimized parameters are capable of machining the workpiece. The obtained measurement results are compared with theoretical methods in Wolfram software. 展开更多
关键词 Cutting force CNC (computer numerical control) machine tools end milling.
下载PDF
Cutting tool temperature prediction method using analytical model for end milling 被引量:6
10
作者 Wu Baohai Cui Di +2 位作者 He Xiaodong Zhang Dinghua Tang Kai 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1788-1794,共7页
Dramatic tool temperature variation in end milling can cause excessive tool wear and shorten its life, especially in machining of difficult-to-machine materials. In this study, a new analytical model-based method for ... Dramatic tool temperature variation in end milling can cause excessive tool wear and shorten its life, especially in machining of difficult-to-machine materials. In this study, a new analytical model-based method for the prediction of cutting tool temperature in end milling is presented.The cutting cycle is divided into temperature increase and decrease phases. For the temperature increase phase, a temperature prediction model considering real friction state between the chip and tool is proposed, and the heat flux and tool-chip contact length are then obtained through finite element simulation. In the temperature decrease phase, a temperature decrease model based on the one-dimension plate heat convection is proposed. A single wire thermocouple is employed to measure the tool temperature in the conducted milling experiments. Both of the theoretical and experimental results are obtained with cutting conditions of the cutting speed ranging from 60 m/min to100 m/min, feed per tooth from 0.12 mm/z to 0.20 mm/z, and the radial and axial depth of cut respectively being 4 mm and 0.5 mm. The comparison results show high agreement between the physical cutting experiments and the proposed cutting tool temperature prediction method. 展开更多
关键词 Analytical model Cutting tool end milling Temperature prediction Tool temperature
原文传递
Modeling of flow and debris ejection in blasting erosion arc machining in end milling mode 被引量:3
11
作者 Ji-Peng Chen Lin Gu +1 位作者 Wan-Sheng Zhao Mario Guagliano 《Advances in Manufacturing》 SCIE EI CAS CSCD 2020年第4期508-518,共11页
Blasting erosion arc machining(BEAM)is a typical arc discharge machining technology that was developed around 2012 to improve the machinability of difficult-to-cut materials.End milling BEAM has been successfully deve... Blasting erosion arc machining(BEAM)is a typical arc discharge machining technology that was developed around 2012 to improve the machinability of difficult-to-cut materials.End milling BEAM has been successfully developed and preliminarily applied in industry.However,owing to the high complexity of the flow field and the difficulty of observing debris in the discharge gap,studies of the flow and debris in end milling BEAM are limited.In this study,fluid dynamics simulations and particle tracking are used to investigate the flow characteristics and debris ejection processes in end milling BEAM.Firstly,the end milling BEAM m o d e is introduced.Then the numerical modeling parameters,geometric models,and simulation methods are presented in detail.Next,the flow distribution and debris ejection are described,analyzed,and discussed.The velocity and pressure distributions of the axial feed and radial feed are observed;the rotation speed and milling depth are found to have almost no effect on the flow velocity magnitude.Further,debris is ejected more rapidly in the radial feed than in the axial feed.The particle kinetic energy tends to increase with increasing milling depth,and smaller particles are more easily expelled from the flushing gap.This study attempts to reveal the flow field properties and debris ejection mechanism of end milling BEAM,which will be helpful in gaining a better understanding of BEAM. 展开更多
关键词 Modeling Flow Debris ejection Blasting erosion arc machining(BEAM) end milling
原文传递
Cutting force prediction for circular end milling process 被引量:16
12
作者 Wu Baohai Yan Xue +1 位作者 Luo Ming Gao Ge 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期1057-1063,共7页
A deduced cutting force prediction model for circular end milling process is presented in this paper. Traditional researches on cutting force model usually focus on linear milling process which does not meet other cut... A deduced cutting force prediction model for circular end milling process is presented in this paper. Traditional researches on cutting force model usually focus on linear milling process which does not meet other cutting conditions, especially for circular milling process. This paper presents an improved cutting force model for circular end milling process based on the typical linear milling force model. The curvature effects of tool path on chip thickness as well as entry and exit angles are analyzed, and the cutting force model of linear milling process is then corrected to fit circular end milling processes. Instantaneous cutting forces during circular end milling process are predicted according to the proposed model. The deduced cutting force model can be used for both linear and circular end milling processes. Finally, circular end milling experiments with constant and variable radial depth were carried out to verify the availability of the proposed method. Experiment results show that measured results and simulated results corresponds well with each other. 展开更多
关键词 Chip thickness Circular end milling Cutting force Machining Radial depth Tool path curvature
原文传递
Optimization of material removal strategy in milling of thin-walled parts 被引量:1
13
作者 李继博 张定华 吴宝海 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第5期108-112,共5页
The optimal material removal strategy can improve a geometric accuracy and surface quality of thin-walled parts such as turbine blades and blisks in high-speed ball end milling.The dominant conception in the material ... The optimal material removal strategy can improve a geometric accuracy and surface quality of thin-walled parts such as turbine blades and blisks in high-speed ball end milling.The dominant conception in the material removal represents the persistence of the workpiece cutting stiffness in operation to advance the machining accuracy and machining efficiency.On the basis of theoretical models of cutting stiffness and deformation,finite element method (FEM) is applied to calculate the virtual displacements of the thin-walled part under given virtual loads at the nodes of the discrete surface.With the reference of deformation distribution of the thin-walled part,the milling material removal strategy is optimized to make the best of bracing ability of still uncut material.This material removal method is summarized as the lower stiffness region removed firstly and the higher stiffness region removed next.Analytical and experimental results show the availability,which has been verified by the blade machining test in this work,for thin-walled parts to reduce cutting deformation and meliorate machining quality. 展开更多
关键词 surface stiffness distribution end milling thin-walled parts removal strategy cutting stiffness
下载PDF
Experimental study on surface integrity refactoring changes of Ti-17 under milling-ultrasonic rolling composite process 被引量:2
14
作者 Zheng Zhou Chang-Feng Yao +2 位作者 Liang Tan Ya Zhang Yi Fan 《Advances in Manufacturing》 SCIE EI CAS CSCD 2023年第3期492-508,共17页
Ultrasonic rolling is an advanced non-cutting surface strengthening method that combines traditional rolling with ultrasonic vibration.In this research,the experiment of orthogonal end milling-ultrasonic rolling compo... Ultrasonic rolling is an advanced non-cutting surface strengthening method that combines traditional rolling with ultrasonic vibration.In this research,the experiment of orthogonal end milling-ultrasonic rolling composite process has been carried out.The surface integrity refactoring changes and its mechanism of Ti-17 titanium alloy during the milling-ultrasonic rolling composite process has been studied and analyzed by the test and analysis of the surface geometric characteristics,residual stress,microhardness and microstructure before and after ultrasonic rolling.The residual stress and microhardness gradient distribution were characterized by cosine decay function and exponential decay function.All indicators of surface integrity were significantly improved after ultrasonic rolling.The study demonstrates that the reduction effect of the surface roughness by ultrasonic rolling process is inversely proportional to the initial surface roughness value.The ultrasonic rolling can only change the distribution form of the surface topography when the initial surface roughness is small.In addition,the improvement effect of ultrasonic rolling on surface compressive residual stress and microhardness decreased with the increase of initial milled surface roughness and surface compressive residual stress due to the factors such as energy absorption efficiency and mechanical properties changes of surface materials.A better ultrasonic rolled surface can be obtained by controlling the roughness and residual compressive stress of the initial milling surface to a small level. 展开更多
关键词 Ti-17 end milling Ultrasonic rolling Surface integrity Refactoring changes
原文传递
On the wavelet analysis of cutting forces for chatter identification in milling 被引量:4
15
作者 Cesar Giovanni Cabrera Anna Carla Araujo Daniel Alves Castello 《Advances in Manufacturing》 SCIE CAS CSCD 2017年第2期130-142,共13页
Chatter vibrations in machining operations affect surface finishing and tool behaviour, particularly in the end-milling of aluminum parts for the aerospace industry. This paper presents a methodological approach to id... Chatter vibrations in machining operations affect surface finishing and tool behaviour, particularly in the end-milling of aluminum parts for the aerospace industry. This paper presents a methodological approach to identify chatter vibrations during manufacturing processes. It relies on wavelet analyses of cutting force signals during milling operations. The cutting-force signal is first decomposed into an approximation/trend sub-signal and detailed subsignals, and it is then re-composed using modified subsignals to reduce measurement noise and strengthen the reference peak forces. The reconstruction of the cuttingforce signal is performed using a wavelet denoising pro- cedure based on a hard-thresholding method. Four experimental configurations were set with specific cutting parameters using a workpiece specifically designed to allow experiments with varying depths of cut. The experimental results indicate that resultant force peaks (after applying the threshold to the detailed sub-signals) are related to the presence of chatter, based on the increased correlation of such peaks and the surface roughness profiles, thereby reinforcing the applicability of the proposed method. The results can be used to control the online occurrence of chatter in end-milling processes, as the method does not depend on the knowledge of cutting geometry nor dynamic parameters. 展开更多
关键词 Cutting force end milling Chatter Waveletfilter
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部