To reveal the sediment transporting mechanism between the abandoned Huanghe River (Yellow River) Delta and radial sand ridges, “End Member” Model and grain size trend analysis have been employed to separate the “...To reveal the sediment transporting mechanism between the abandoned Huanghe River (Yellow River) Delta and radial sand ridges, “End Member” Model and grain size trend analysis have been employed to separate the “dynamic populations” in the surficial sediment particle spectra and to determine the possible sediment transporting pathway. The results reveal four “dynamic subpopulations”(EM1 to EM4) and two reverse sediment transporting directions: a northward transport tend from the radial sand ridges to mud patch, and a southward transport trend in deep water area outside the mud patch. Combined with the published hydrodynamic information, the transporting mechanism of dynamic populations has been discussed, and the main conclusion is that the transporting of finer subpopulations EM1 and EM2 is controlled by the “anticlockwise residual current circulation” forming during tidal cycle, which favor a northward transporting trend and the forming of mud patch on the north of radial sand ridges, while the transporting of coarser EM3 is mainly controlled by wind driven drift in winter, which favors a southward transporting direction.展开更多
Spectral unmixing is essential for exploitation of remotely senseddata of Hyperspectral Images (HSI). It amounts to the identification of a position of spectral signatures that are pure and therefore called end member...Spectral unmixing is essential for exploitation of remotely senseddata of Hyperspectral Images (HSI). It amounts to the identification of a position of spectral signatures that are pure and therefore called end members andtheir matching fractional, draft rules abundances for every pixel in HSI. Thispaper aims to unmix hyperspectral data using the minimal volume methodof elementary scrutiny. Moreover, the problem of optimization is solved bythe implementation of the sequence of small problems that are constrainedquadratically. The hard constraint in the final step for the abundance fractionis then replaced with a loss function of hinge type that accounts for outlinersand noise. Existing algorithms focus on estimating the endmembers (Ems)enumeration in a sight, discerning of spectral signs of EMs, besides assessmentof fractional profusion for every EM in every pixel of a sight. Nevertheless, allthe stages are performed by only a few algorithms in the process of hyperspectral unmixing. Therefore, the Non-negative Minimum Volume Factorization(NMVF) algorithm is further extended by fusing it with the nonnegativematrix of robust collaborative factorization that aims to perform all the threeunmixing chain steps for hyperspectral images. The major contributions ofthis article are in this manner: (A) it performs Simplex analysis of minimum volume for hyperspectral images with unsupervised linear unmixing isemployed. (B) The simplex analysis method is configured with an exaggeratedform of the elementary which is delivered by vertical component analysis(VCA). (C) The inflating factor is chosen carefully inactivating the constraintsin a large majority for relating to the source fractions abundance that speedsup the algorithm. (D) The final step is making simplex analysis method robustto outliners as well as noise that replaces the profusion element positivity hardrestraint by a hinge kind soft restraint, preserving the local minima havinggood quality. (E) The matrix factorization method is applied that is capable ofperforming the three major phases of the hyperspectral separation sequence.The anticipated approach can find application in a scenario where the endmembers are known in advance, however, it assumes that the endmemberscount is corresponding to an overestimated value. The proposed method isdifferent from other conventional methods as it begins with the overestimationof the count of endmembers wherein removing the endmembers that areredundant by the means of collaborative regularization. As demonstrated bythe experimental results, proposed approach yields competitive performancecomparable with widely used methods.展开更多
Four end members were inverted from surface sediment grain size data from the South Yellow Sea by using the end member(EM) model. The sediment provenance and hydrodynamic meanings of each EM were discussed based on th...Four end members were inverted from surface sediment grain size data from the South Yellow Sea by using the end member(EM) model. The sediment provenance and hydrodynamic meanings of each EM were discussed based on the frequency and spatial distributions of the EMs. EM1 and EM2 reflect the dynamic transport and sorting processes of the terrigenous sediment, and EM3 and EM4 reflect the modification of relic sand. The ocean front mainly affected transport of relatively coarse terrigenous sediment in the South Yellow Sea, and the fine terrigenous sediments were generally unaffected by the ocean front. Fine sediment could pass through the ocean front and deposit in the central South Yellow Sea under weak tidal condition to form most part of the Central Yellow Sea Mud(CYSM). The CYSM extended toward northwest and southwest. The sediment in the north part of the CYSM mainly consisted of sediment from the Yellow River(Huanghe) in the northwest, and the sediment in the southwest part of CYSM mainly consisted of Subei coastal sediments from both the Yangtze River(Changjiang) and the Yellow River. Compared to the traditional method of sediment grain size analysis, the EM model can determine the EMs and provide better explanations of the sediment provenance and dynamic regional sedimentary environment in the study area.展开更多
The loess accumulation process has great potential to record patterns of atmospheric circulation change,paleoclimate,and paleoenvironmental evolution.South-eastern Xizang is a climatically sensitive region and here,we...The loess accumulation process has great potential to record patterns of atmospheric circulation change,paleoclimate,and paleoenvironmental evolution.South-eastern Xizang is a climatically sensitive region and here,we analyze a loess profile at Ranwu in order to explore the processes and interactions of dust transport and paleoclimate evolution in the region.Based on parametric grain size end-member analysis,optically stimulated luminescence(OSL)dating,and environmental proxies we show that the Ranwu loess profile comprises five end members(EMs).EM1 represents the fine silt fraction transported by high-altitude westerly winds over long distances;EM2 represents the medium silt fraction accumulated by glacier winds;EM3 is the coarse silt fraction transported by local dust storms under the action of strong glacier winds;EM4 represents the very fine sand fraction transported by strong local dust storms,different wind strengths controls the relative proportion of EM3 and EM4 over time.EM5 is the coarse sand fraction formed from the product of strong weathering of gravels.OSL dating shows loess sedimentation at Ranwu started around 11.16 ka.The prevailing climate was generally warm and wet between 11.6 and 4.2 ka,with four cooling events at 10.50,9.18,7.85,and 6.37 ka.Extensive paleosol development between 8.2 and 4.2 ka,a change to dry and cold climate conditions was favorable for loess formation after 4.2 ka.The palaeoenvironmental changes and abrupt climate events recorded in the Ranwu loess sequence are consistent with Holocene global environmental changes.展开更多
This study was conducted to identify the origin, hydrogeochemical processes and evolution of groundwater in a tectonic valley. This study was carried out with the aim of quantifying the proportions of groundwater flow...This study was conducted to identify the origin, hydrogeochemical processes and evolution of groundwater in a tectonic valley. This study was carried out with the aim of quantifying the proportions of groundwater flows contributing to the water chemistry abstracted in a zone of convergence favored by the presence of active faults. The study area is located in the Trans-Mexican Volcanic Belt. End members methodology was applied to identify the mixing of hydrothermal with fresh groundwater, where changes in the aquifer geology result in distinct groundwater chemical signatures. Ternary mixing was quantified using conservative elements. Moreover, other evolutionary processes, such as ion exchange and silicate weathering occur due to changes in the geology of the area. In ternary mixing, each of the end members is associated with the lithology through which it circulates. The local flow contributes 70% of the water to the system, the intermediate flow contributes 14%, and the regional flow contributes 16%. Three types of water are produced: Na-HCO3, due to the interaction of water with volcanic rocks of rhyolitic composition, Na-Mg-HCO3, due to the interaction of water with volcanic rocks of basaltic-andesite composition, and Ca-HCO3, due to the interaction of water with sedimentary calcareous rocks.展开更多
文摘To reveal the sediment transporting mechanism between the abandoned Huanghe River (Yellow River) Delta and radial sand ridges, “End Member” Model and grain size trend analysis have been employed to separate the “dynamic populations” in the surficial sediment particle spectra and to determine the possible sediment transporting pathway. The results reveal four “dynamic subpopulations”(EM1 to EM4) and two reverse sediment transporting directions: a northward transport tend from the radial sand ridges to mud patch, and a southward transport trend in deep water area outside the mud patch. Combined with the published hydrodynamic information, the transporting mechanism of dynamic populations has been discussed, and the main conclusion is that the transporting of finer subpopulations EM1 and EM2 is controlled by the “anticlockwise residual current circulation” forming during tidal cycle, which favor a northward transporting trend and the forming of mud patch on the north of radial sand ridges, while the transporting of coarser EM3 is mainly controlled by wind driven drift in winter, which favors a southward transporting direction.
基金This research was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘Spectral unmixing is essential for exploitation of remotely senseddata of Hyperspectral Images (HSI). It amounts to the identification of a position of spectral signatures that are pure and therefore called end members andtheir matching fractional, draft rules abundances for every pixel in HSI. Thispaper aims to unmix hyperspectral data using the minimal volume methodof elementary scrutiny. Moreover, the problem of optimization is solved bythe implementation of the sequence of small problems that are constrainedquadratically. The hard constraint in the final step for the abundance fractionis then replaced with a loss function of hinge type that accounts for outlinersand noise. Existing algorithms focus on estimating the endmembers (Ems)enumeration in a sight, discerning of spectral signs of EMs, besides assessmentof fractional profusion for every EM in every pixel of a sight. Nevertheless, allthe stages are performed by only a few algorithms in the process of hyperspectral unmixing. Therefore, the Non-negative Minimum Volume Factorization(NMVF) algorithm is further extended by fusing it with the nonnegativematrix of robust collaborative factorization that aims to perform all the threeunmixing chain steps for hyperspectral images. The major contributions ofthis article are in this manner: (A) it performs Simplex analysis of minimum volume for hyperspectral images with unsupervised linear unmixing isemployed. (B) The simplex analysis method is configured with an exaggeratedform of the elementary which is delivered by vertical component analysis(VCA). (C) The inflating factor is chosen carefully inactivating the constraintsin a large majority for relating to the source fractions abundance that speedsup the algorithm. (D) The final step is making simplex analysis method robustto outliners as well as noise that replaces the profusion element positivity hardrestraint by a hinge kind soft restraint, preserving the local minima havinggood quality. (E) The matrix factorization method is applied that is capable ofperforming the three major phases of the hyperspectral separation sequence.The anticipated approach can find application in a scenario where the endmembers are known in advance, however, it assumes that the endmemberscount is corresponding to an overestimated value. The proposed method isdifferent from other conventional methods as it begins with the overestimationof the count of endmembers wherein removing the endmembers that areredundant by the means of collaborative regularization. As demonstrated bythe experimental results, proposed approach yields competitive performancecomparable with widely used methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.41130856&41206053)the National Key Basic Research Program of China(Grant No.2010CB428901)
文摘Four end members were inverted from surface sediment grain size data from the South Yellow Sea by using the end member(EM) model. The sediment provenance and hydrodynamic meanings of each EM were discussed based on the frequency and spatial distributions of the EMs. EM1 and EM2 reflect the dynamic transport and sorting processes of the terrigenous sediment, and EM3 and EM4 reflect the modification of relic sand. The ocean front mainly affected transport of relatively coarse terrigenous sediment in the South Yellow Sea, and the fine terrigenous sediments were generally unaffected by the ocean front. Fine sediment could pass through the ocean front and deposit in the central South Yellow Sea under weak tidal condition to form most part of the Central Yellow Sea Mud(CYSM). The CYSM extended toward northwest and southwest. The sediment in the north part of the CYSM mainly consisted of sediment from the Yellow River(Huanghe) in the northwest, and the sediment in the southwest part of CYSM mainly consisted of Subei coastal sediments from both the Yangtze River(Changjiang) and the Yellow River. Compared to the traditional method of sediment grain size analysis, the EM model can determine the EMs and provide better explanations of the sediment provenance and dynamic regional sedimentary environment in the study area.
基金supported by the National Natural Science Foundation of China(Grant No.41807448).
文摘The loess accumulation process has great potential to record patterns of atmospheric circulation change,paleoclimate,and paleoenvironmental evolution.South-eastern Xizang is a climatically sensitive region and here,we analyze a loess profile at Ranwu in order to explore the processes and interactions of dust transport and paleoclimate evolution in the region.Based on parametric grain size end-member analysis,optically stimulated luminescence(OSL)dating,and environmental proxies we show that the Ranwu loess profile comprises five end members(EMs).EM1 represents the fine silt fraction transported by high-altitude westerly winds over long distances;EM2 represents the medium silt fraction accumulated by glacier winds;EM3 is the coarse silt fraction transported by local dust storms under the action of strong glacier winds;EM4 represents the very fine sand fraction transported by strong local dust storms,different wind strengths controls the relative proportion of EM3 and EM4 over time.EM5 is the coarse sand fraction formed from the product of strong weathering of gravels.OSL dating shows loess sedimentation at Ranwu started around 11.16 ka.The prevailing climate was generally warm and wet between 11.6 and 4.2 ka,with four cooling events at 10.50,9.18,7.85,and 6.37 ka.Extensive paleosol development between 8.2 and 4.2 ka,a change to dry and cold climate conditions was favorable for loess formation after 4.2 ka.The palaeoenvironmental changes and abrupt climate events recorded in the Ranwu loess sequence are consistent with Holocene global environmental changes.
基金the support Olivia Cruz and Alejandra Aguayo from the Analytical Chemistry Laboratory at the Instituto de Geofisica,National Autonomous University of Mexico。
文摘This study was conducted to identify the origin, hydrogeochemical processes and evolution of groundwater in a tectonic valley. This study was carried out with the aim of quantifying the proportions of groundwater flows contributing to the water chemistry abstracted in a zone of convergence favored by the presence of active faults. The study area is located in the Trans-Mexican Volcanic Belt. End members methodology was applied to identify the mixing of hydrothermal with fresh groundwater, where changes in the aquifer geology result in distinct groundwater chemical signatures. Ternary mixing was quantified using conservative elements. Moreover, other evolutionary processes, such as ion exchange and silicate weathering occur due to changes in the geology of the area. In ternary mixing, each of the end members is associated with the lithology through which it circulates. The local flow contributes 70% of the water to the system, the intermediate flow contributes 14%, and the regional flow contributes 16%. Three types of water are produced: Na-HCO3, due to the interaction of water with volcanic rocks of rhyolitic composition, Na-Mg-HCO3, due to the interaction of water with volcanic rocks of basaltic-andesite composition, and Ca-HCO3, due to the interaction of water with sedimentary calcareous rocks.