期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Non-26S Proteasome Proteolytic Role of Ubiquitin in Plant Endocytosis and Endosomal Trafficking 被引量:6
1
作者 Miaomiao Tian Qi Xie 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2013年第1期54-63,共10页
The 76 amino acid protein ubiquitin (Ub) is highly conserved in all eukaryotic species. It plays important roles in many cellular processes by covalently attaching to the target proteins. The best known function of ... The 76 amino acid protein ubiquitin (Ub) is highly conserved in all eukaryotic species. It plays important roles in many cellular processes by covalently attaching to the target proteins. The best known function of Ub is marking substrate proteins for degra- dation by the 26S proteasome. In fact, other consequences of ubiquitination have been discovered in yeast and mammals, such as membrane trafficking, DNA repair, chromatin modification, and protein kinase activation. The common mechanism underlying these processes is that Ub serves as a signal to sort proteins to the vacuoles or lysosomes for degradation as opposed to 26S proteasome-dependent degradation. To date, several reports have indicated that a similar function of Ub also exists in plants. This review focuses on a summary and analysis of the recent research progress on Ub acting as a signal to mediate endocytosis and endosomal trafficking in plants. 展开更多
关键词 ENDOCYTOSIS endosomal trafficking ubiquitin.
原文传递
ESCRT-I Component VPS23A Affects ABA Signaling by Recognizing ABA Receptors for Endosomal Degradation 被引量:19
2
作者 Feifei Yu Lijuan Lou +8 位作者 Miaomiao Tian Qingliang Li Yanglin Ding Xiaoqiang Cao Yaorong Wu Borja Belda-Palazon Pedro L. Rodriguez Shuhua Yang Qi Xie 《Molecular Plant》 SCIE CAS CSCD 2016年第12期1570-1582,共13页
Recent discovery of PYR/PYL/RCAR-type abscisic acid (ABA) receptors has become one of most significant advances in plant science in the past decade. In mammals, endosomal sorting acts as an important pathway to down... Recent discovery of PYR/PYL/RCAR-type abscisic acid (ABA) receptors has become one of most significant advances in plant science in the past decade. In mammals, endosomal sorting acts as an important pathway to downregulate different types of receptors, but its role in plant hormone signaling is poorly understood. Here, we report that an ubiquitin E2-1ike protein, VPS23A, which is a key component of ESCRT-I, negatively regulates ABA signaling. VPS23A has epistatic relationship with PYR/PYL/RCAR-type ABA receptors and disruption of VPS23A enhanced the activity of key kinase OST1 in the ABA signaling pathway under ABA treatment. Moreover, VPS23A interacts with PYR1/PYLs and K63-1inked diubiquitin, and PYL4 possesses K63-1inked ubiquitinated modification in vivo. Further analysis revealed that VPS23A affects the subcellular localization of PYR 1 and the stability of PYL4. Taken together, our results suggest that VPS23A affects PYR1/ PYL4 via vacuole-mediated degradation, providing an advanced understanding of both the turnover of ABA receptors and ESCRTs in plant hormone signaling. 展开更多
关键词 ABA receptors ESCRTs UBIQUITIN endosomal trafficking
原文传递
Phosphorylation‐dependent Traffcking of Plasma Membrane Proteins in Animal and Plant Cells 被引量:5
3
作者 Remko Offringa Fang Huang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2013年第9期789-808,共20页
In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these... In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples. 展开更多
关键词 Ceil polarity endosomal trafficking PHOSPHORYLATION PIN auxin efflux carriers plasmamembrane-iocalized transmembrane proteins.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部