Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-elem...Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-element Ti-Zr-Ta alloys with good casting performance were studied.The microstructure of the Ti_(x)ZrTa alloys gradually change from BCC+HCP to single BCC structure with the increase of Ti.While the Ti_(2)Zr_(y)Ta alloys was still uniform and single BCC structure with the increase of Zr.The evolution of microstructure and composition then greatly affect the mechanical properties and energy-release characteristics of Ti-Zr-Ta alloys.The synergistic effect of dual phase structure increases the fracture strain of Ti_(x)ZrTa(x=0.2,0.5)with the Ti content decreases,while the fracture strain of Ti_(x)ZrTa(x=2.0,3.0,4.0)gradually increase with the Ti content increases caused by the annihilation of the obstacles for dislocation movement.And as Zr content increases,the fracture strain of Ti_(2)Zr_(y)Ta alloys decrease,then the oxidation reaction rate and fragmentation degree gradually increase.The higher oxidation rate and the lager exposed oxidation area jointly leads the higher releasing energy efficiency of Ti_(x)ZrTa alloys with low Ti content and Ti_(2)Zr_(y)Ta alloys with high Zr content.展开更多
Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows sig...Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows significant differences.However,at present,there are few effective methods for evaluating the energy release characteristics of the middle reaction stage of such explosives,which can have a duration of tens to hundreds of microseconds.The present work demonstrates an approach to assessing the midstage of an aluminized explosive detonation based on a water push test employing a high degree of confinement.In this method,the explosive is contained in a steel cylinder having one end closed that is installed at the bottom of a transparent water tank.Upon detonation,the gaseous products expand in one direction while forcing water ahead of them.The resulting underwater shock wave and the interface between the gas phase products and the water are tracked using an ultra-high-speed framing and streak camera.The shock wave velocity in water and the expansion work performed by the gaseous detonation products were calculated to assess the energy release characteristics of aluminized explosives such as CL-20 and RDX in the middle stage of the detonation reaction.During the middle stage of the detonation process of these aluminized explosives,the aluminum reaction reduced the attenuation of shock waves and increased the work performed by gas phase products.A higher aluminum content increased the energy output while the presence of oxidants slowed the energy release rate.This work demonstrates an effective means of evaluating the performance of aluminized explosives.展开更多
Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument...Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument for IEERG measurement was developed.Compared with previous setups,the new one which is equipped with three convergent nozzles and quick-release mechanism gets improved in data acquisition and gas sealing and releasing performance.To comprehensively know the effect of gas pressure,particle size,and nozzle area on IEERG,a series of experiments were carried out with this new setup.The variable control test results indicated that the gas pressure-IEERG curves remain the linear trend and the particle size-IEERG curves maintain the negative exponential trend for nozzle areas at 1.13,2.26,and3.39 mm2,respectively.The increase in nozzle area leads to deceases in value of IEERG and absolute value of slope of fitting curves in each test.In addition,the orthogonal experiment showed that the influence of gas pressure,nozzle area,and particle size on IEERG decreases in turn.Only gas pressure had a marked impact on IEERG.This work offers great importance in improving the accuracy of prediction of coal and gas outburst.展开更多
Titanium hydride(TiH_(2)), a promising high-energy additive, is doped into PTFE/Al to optimize the energy output structure of the reactive jet and strive for better aftereffect damage ability to the target. Six types ...Titanium hydride(TiH_(2)), a promising high-energy additive, is doped into PTFE/Al to optimize the energy output structure of the reactive jet and strive for better aftereffect damage ability to the target. Six types of PTFE/Al/TiH_(2) reactive liners with different TiH_(2) content are prepared by the molding and sintering method. The energy release characteristics of PTFE/Al/TiH_(2) reactive jet are tested by the transient explosion energy test, and are characterized from pressure and temperature. The reaction delay time,pressure history, and temperature history of the energy release process are obtained, then the actual value of released energy and reaction efficiency of the reactive jet are calculated. The results show that the peak pressure and temperature of the PTFE/Al/TiH_(2) jet initially increase and then decrease with increasing TiH_(2) content. When the TiH_(2) content is 10%, the actual value of released energy and reaction efficiency increased by 24% and 6.4%, respectively, compared to the PTFE/Al jet. The reaction duration of the reactive material is significantly prolonged as the TiH_(2) content increased from 0% to 30%. Finally,combined with the energy release behaviors of PAT material and the dynamic deformation process of liner, the enhancement mechanism of TiH_(2) on energy release of the reactive jet is expounded.展开更多
To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to succe...To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to successfully prepare the coated spherical propellant for the first time.The effects of fluidized bed coating temperature,air velocity,flow speed and atomization pressure on the adhesion rate,coating integrity and coating uniformity of the coated spherical propellant were investigated,and the preparation of coated spherical propellant with homogeneous size and structural integrity was achieved for the first time.The microscopic morphology,chemical structure,water vapor adsorption behavior,combustion performance,and ageing resistance property of the coated spherical propellant were systematically investigated by,Fourier transforms infrared spectroscopy(FTIR),Micro confocal raman spectrometer,field scanning electron microscopy(SEM),dynamic vapor adsorption techniques,and closed bomb test,confirming the surface core-shell structure and the tightly bonded interfacial structure of coated spherical propellant.Meanwhile,the coated spherical propellant has good hygroscopic,excellent progressive burning and long storage stability.展开更多
A new extrapolation approach was proposed to calculate the strain energy release rates of complex cracks. The point_by_point closed method was used to calculate the closed energy, thus the disadvantage of self_inconsi...A new extrapolation approach was proposed to calculate the strain energy release rates of complex cracks. The point_by_point closed method was used to calculate the closed energy, thus the disadvantage of self_inconsistency in some published papers can be avoided. The disadvantage is that the closed energy is repeatedly calculated: when closed nodal number along radial direction is more than two, the displacement of nodes behind the crack tip that is multiplied by nodal forces, the closed energy has been calculated and the crack surfaces have been closed, and that closed energy of middle point is calculated repeatedly. A DCB (double cantilever beam) specimen was calculated and compared with other theoretical results, it is shown that a better coincidence is obtained. In addition the same results are also obtained for compact tension specimen, three point bend specimen and single edge cracked specimen. In comparison with theoretical results,the error can be limited within 1 per cent. This method can be extended to analyze the fracture of composite laminates with various delamination cracks.展开更多
Coal burst is a manifestation of rapid energy release,which is considered as one of the most critical operational hazards in underground coal mines.This study numerically investigates the effects of discontinuities on...Coal burst is a manifestation of rapid energy release,which is considered as one of the most critical operational hazards in underground coal mines.This study numerically investigates the effects of discontinuities on the strength and energy release characteristics of coal mass samples under uniaxial compression.The universal distinct element code(UDEC)was used to model pillar-scale coal mass samples that were represented by an assembly of triangular deformable blocks,and pre-existing discontinuities such as bedding planes and cleats were also included in the models.It shows that cleat spacing can have a significant impact on compressive strength and energy release,with both strength and energy release(magnitude and rate)reducing as the number of cleats was increased.This work is one of the first attempts to numerically model and quantify the energy release which occurs during the failure of pillar-scale coal mass samples with varying cleat densities.The insights from the numerical modelling can help to understand the possible energy release mechanisms and associated coal burst potential in changing coal cleat conditions.展开更多
In this paper,the fracture problem in non-principal directions of elasticity for a simple layer plate of linear-elastic orthotropic composite materials is studied.The formulae of transformation between characteristic ...In this paper,the fracture problem in non-principal directions of elasticity for a simple layer plate of linear-elastic orthotropic composite materials is studied.The formulae of transformation between characteristic roots,coefficients of elastic compliances in non-principal directions of elasticity and corresponding parameters in principal directions of elasticity are derived.Then,the computing formulae of strain energy release rate under skew-symmetric loading in terms of engineering parameters for principal directions of elasticity are obtained by substituting crack-tip stresses and displacements into the basic formula of the strain energy release rate.展开更多
The strata deformation in mining area was monitored in Dabaoshan copper-iron mine,and an analytical method of strata energy release was put forward.On the basis of chaotic theory,by reconstructing the phase space for ...The strata deformation in mining area was monitored in Dabaoshan copper-iron mine,and an analytical method of strata energy release was put forward.On the basis of chaotic theory,by reconstructing the phase space for time series data of strata energy release,the saturated embedding dimension and the correlation dimension of the dynamic system were obtained to be 4 and 1.212 8,respectively,and the evolution laws of distances between phase points of strata energy release in the phase space were revealed.With grey theory,a prediction model of strata energy release was set up,the maximum error of which was less than 6.7%.The results show that there are chaotic characters in strata energy release during mining;after reconstructing phase space,the subtle changing characteristics of energy release can be magnified,and the internal rules can be fully demonstrated.According to the laws,a warning system for strata stability in mining area was established to provide a technical safeguard for safe mining.展开更多
Quantifying the rockburst consequence is of critical importance to reduce the hazards with preventative measures in underground mines and deep tunnels. Contours of energy components within a pillar model are plotted a...Quantifying the rockburst consequence is of critical importance to reduce the hazards with preventative measures in underground mines and deep tunnels. Contours of energy components within a pillar model are plotted at different rockmass damage stages, and plastic strain work and released energy are proposed as indicators of rockmass damage consequence. One pillar model under different loading stiffness is simulated to assess indicators of pillar burst and the resulting damages. The results show the rockmass damage under soft loading stiffness has larger magnitude of plastic strain work and released energy than that which is under stiff loading stiffness, indicating the rockburst consequence can be quantified with plastic strain work and released energy in numerical models. With the quantified rockburst consequence,preventative measures can be taken to avoid severe hazards to mine safety.展开更多
The stress path characteristics of surrounding rock in the formation of gob were analyzed and the unloading was solved. Taking Chengchao Iron Mine as the engineering background, the model for analyzing the instability...The stress path characteristics of surrounding rock in the formation of gob were analyzed and the unloading was solved. Taking Chengchao Iron Mine as the engineering background, the model for analyzing the instability of deep gob was established based on the mechanism of stress relief in deep mining.The energy evolution law was analyzed by introducing the local energy release rate index(LERR), and the energy criterion of the instability of surrounding rock was established based on the cusp catastrophe theory. The results show that the evolution equation of the local energy release of the surrounding rock is a quartic function with one unknown and the release rate increases gradually during the mining process.The calculation results show that the gob is stable. The LERR per unit volume of the bottom structure is relatively smaller which means that the stability is better. The LERR distribution showed that there was main energy release in the horizontal direction and energy concentration in the vertical direction which meets the characteristics of deep mining. In summary, this model could effectively calculate the stability of surrounding rock in the formation of gob. The LERR could reflect the dynamic process of energy release,transfer and dissipation and that provided an important reference for the study of the stability of deep mined out area.展开更多
Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can ...Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can increase the lethality of warheads due to their dual functionality.This paper focuses on the energy release characteristics of RM casings prepared by alloy melting and casting process under explosive loading.Explosion experiments of RM and conventional 2A12 aluminum alloy casings were conducted in free field to capture the explosive fireballs,temperature distribution,peak overpressure of the air shock wave and the fracture morphology of fragments of reactive material(RM)warhead casings by using high-speed camera,infrared thermal imager temperature and peak overpressure testing and scanning electron microscope.Results showed that an increase of both the fireball temperature and air shock wave were observed in all RM casings compared to conventional 2A12 aluminum ally casings.The RM casings can improve the peak overpressure of the air shock wave under explosion loading,though the results are different with different charge ratios.According to the energy release characteristics of the RM,increasing the thickness of RM casings will increase the peak overpressure of the near-field air shock wave,while reducing the thickness will increase the peak overpressure of the far-field air shock wave.展开更多
The molecular mechanisms of energy status related to the umami taste of postharvest shiitake mushrooms during spore release remain poorly understood.In this study,the variations of energy status and umami taste of mus...The molecular mechanisms of energy status related to the umami taste of postharvest shiitake mushrooms during spore release remain poorly understood.In this study,the variations of energy status and umami taste of mushrooms were measured at 25℃.At 24 h storage,slight spore prints of mushrooms were first pictured,respiration peaked.Significant ATP decrease and ADP increase were also observed as the initiation of postharvest senescence(P<0.05).Meanwhile,the activities of phosphohexose isomerase,succinate dehydrogenase,glucose-6-phosphate dehydrogenase and cytochrome c oxidase and the contents of umami nucleotides and amino acids were maintained at higher levels in mushrooms with spore release.Notably,the equivalent umami concentration(EUC)was strongly correlated with energy levels(R=0.80).Fifteen related gene expression levels in the energy metabolism pathway were downregulated.LecpdP1 and LeAK were significantly expressed in the conversion of ATP into AMP and played key roles in connecting the energy state and umami level.These results provided valuable insights on the umami taste associated with energy metabolism mechanism during postharvest mushroom spore release.展开更多
The siRNA-loaded lipid nanoparticles have attracted much attention due to its significant gene silencing effect and successful marketization.However,the in vivo distribution and release of siRNA still cannot be effect...The siRNA-loaded lipid nanoparticles have attracted much attention due to its significant gene silencing effect and successful marketization.However,the in vivo distribution and release of siRNA still cannot be effectively monitored.In this study,based on the fluorescence resonance energy transfer(FRET)principle,a fluorescence dye Cy5-modified survivin siRNA was conjugated to nanogolds(Au-DR-siRNA),which were then wrapped with lipid nanoparticles(LNPs)for monitoring the release behaviour of siRNA in vivo.The results showed that once Au-DR-siRNA was released from the LNPs and cleaved by the Dicer enzyme to produce free siRNA in cells,the fluorescence of Cy5 would change from quenched state to activated state,showing the location and time of siRNA release.Besides,the LNPs showed a significant antitumor effect by silencing the survivin gene and a CT imaging function superior to iohexol by nanogolds.Therefore,this work provided not only an effective method for monitoring the pharmacokinetic behaviour of LNP-based siRNA,but also a siRNA delivery system for treating and diagnosing tumors.展开更多
Numerical analysis of the total energy release of surrounding rocks excavated by drill-and-blast (D&B) method and tunnel boring machine (TBM) method is presented in the paper. The stability of deep tunnels during...Numerical analysis of the total energy release of surrounding rocks excavated by drill-and-blast (D&B) method and tunnel boring machine (TBM) method is presented in the paper. The stability of deep tunnels during excavation in terms of energy release is also discussed. The simulation results reveal that energy release during blasting excavation is a dynamic process. An intense dynamic effect is captured at large excavation footage. The magnitude of energy release during full-face excavation with D&B method is higher than that with TBM method under the same conditions. The energy release rate (ERR) and speed (ERS) also have similar trends. Therefore, the rockbursts in tunnels excavated by D&B method are frequently encountered and more intensive than those by TBM method. Since the space after tunnel face is occupied by the backup system of TBM, prevention and control of rockbursts are more difficult. Thus, rockbursts in tunnels excavated by TBM method with the same intensity are more harmful than those in tunnels by D&B method. Reducing tunneling rate of TBM seems to be a good means to decrease ERR and risk of rockburst. The rockbursts observed during excavation of headrace tunnels at Jinping II hydropower station in West China confirm the analytical results obtained in this paper.展开更多
In the fracture problems of hydrophilic elastic materials under coupling effects of heat conduction, moisture diffusion and mechanical deformation, the conventional J-integral is no longer path independent. The value ...In the fracture problems of hydrophilic elastic materials under coupling effects of heat conduction, moisture diffusion and mechanical deformation, the conventional J-integral is no longer path independent. The value of J is unequal to the energy release rate in hygrothermal coupling cases. In the present paper, we derived a general form of the energy release rate for hygrothermal fracture problems of the hydrophilic elastic materials on the basis of energy balance equation in cracked areas. By introducing the constitutive relations and the essential equations of irreversible thermodynamics, a specific expression of the energy release rate was obtained, and the expression can be reformmulated as path independent integrals, which is equivalent to the energy release rate of the fracture body. The path independence of the integrals is then verified numerically.展开更多
In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical si...In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical simulation. It is found that the small scale SGS stress is much smaller than the large scale SGS stress for all the stress components. The dominant contributor to large scale SGS stress is the cross stress between small scale and subgrid scale motions, while the cross stress between large scale and subgrid scale motions make major contributions to small scale SGS stress. The energy transfer from resolved large scales to subgrid scales is mainly caused by SGS Reynolds stress, while that between resolved small scales and subgrid scales are mainly due to the cross stress. The multiscale formulation of SGS models are evaluated a priori, and it is found that the small- small model is superior to other variants in terms of SGS dissipation.展开更多
The fracture behavior of ferroelectrics has been intensively studied in recent decades, though currently a widely accepted fracture mechanism is still lacking. In this work, enlightened by previous experimental observ...The fracture behavior of ferroelectrics has been intensively studied in recent decades, though currently a widely accepted fracture mechanism is still lacking. In this work, enlightened by previous experimental observations that crack propagation in ferroelectrics is always accompanied by domain switching, we propose a micromechanical model in which both crack propagation and domain switching are controlled by energy-based criteria. Both electric energy and mechanical energy can induce domain switching, while only mechanical energy can drive crack propagation. Furthermore, constrained domain switching is considered in this model, leading to the gradient domain switching zone near the crack tip. Analysis results show that stress-induced ferroelastic switching always has a toughening effect as the mechanical energy release rate serves as the driving force for both fracture and domain switching. In comparison, the electric-field-induced switching may have either a toughening or detoughening effect. The proposed model can qualitatively agree with the existing experimental results.展开更多
In this paper, the postbuckling governing equations and the analytical expression of the energy release rates associated with delamination growth in a compression-loaded cylindrical shell are derived by using the vari...In this paper, the postbuckling governing equations and the analytical expression of the energy release rates associated with delamination growth in a compression-loaded cylindrical shell are derived by using the variational principle of moving boundary and the Griffith fracture criterion. The finite difference method is used to generate the postbuckling solutions of the delaminated cylindrical shells, and with these solutions, the values of the energy release rates are determined. In simulational examples, the effects of a wide range of parameters, such as delamination sizes and depths, boundary conditions, geometrical parameters, material properties and laminate stacking sequences on the energy release rates of axisymmetrical laminated cylindrical shells are intensively discussed.展开更多
An interface crack analysis is presented for further understanding the characteristics of the crack-tip field. The conditions under which the energy release rate components would exist are emphasized and the relations...An interface crack analysis is presented for further understanding the characteristics of the crack-tip field. The conditions under which the energy release rate components would exist are emphasized and the relations between energy release rate components and the stress intensity factors are given. Combining with the results of chasical plate theory analysis. a closed-form solution for stress intensity factors in terms of external loading as well as some geometric and material parameters for fairly general composite laminates is derived Then. an analytical solution for energy release rate components is deduced. In order to get energy release rate components under general loading condition. a mode mix parameter, Ω, must be determined separately. A methodology for determining Ω is discussed. Finally. several different kinds of laminates are examined and the results obtained could be used in engineering applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52171166,11972372 and U20A20231)supported by Sinoma Institute of Materials Research(Guang Zhou)Co.,Ltd。
文摘Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-element Ti-Zr-Ta alloys with good casting performance were studied.The microstructure of the Ti_(x)ZrTa alloys gradually change from BCC+HCP to single BCC structure with the increase of Ti.While the Ti_(2)Zr_(y)Ta alloys was still uniform and single BCC structure with the increase of Zr.The evolution of microstructure and composition then greatly affect the mechanical properties and energy-release characteristics of Ti-Zr-Ta alloys.The synergistic effect of dual phase structure increases the fracture strain of Ti_(x)ZrTa(x=0.2,0.5)with the Ti content decreases,while the fracture strain of Ti_(x)ZrTa(x=2.0,3.0,4.0)gradually increase with the Ti content increases caused by the annihilation of the obstacles for dislocation movement.And as Zr content increases,the fracture strain of Ti_(2)Zr_(y)Ta alloys decrease,then the oxidation reaction rate and fragmentation degree gradually increase.The higher oxidation rate and the lager exposed oxidation area jointly leads the higher releasing energy efficiency of Ti_(x)ZrTa alloys with low Ti content and Ti_(2)Zr_(y)Ta alloys with high Zr content.
基金supported by the National Natural Science Foundation of China(Grant No.11832006)。
文摘Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows significant differences.However,at present,there are few effective methods for evaluating the energy release characteristics of the middle reaction stage of such explosives,which can have a duration of tens to hundreds of microseconds.The present work demonstrates an approach to assessing the midstage of an aluminized explosive detonation based on a water push test employing a high degree of confinement.In this method,the explosive is contained in a steel cylinder having one end closed that is installed at the bottom of a transparent water tank.Upon detonation,the gaseous products expand in one direction while forcing water ahead of them.The resulting underwater shock wave and the interface between the gas phase products and the water are tracked using an ultra-high-speed framing and streak camera.The shock wave velocity in water and the expansion work performed by the gaseous detonation products were calculated to assess the energy release characteristics of aluminized explosives such as CL-20 and RDX in the middle stage of the detonation reaction.During the middle stage of the detonation process of these aluminized explosives,the aluminum reaction reduced the attenuation of shock waves and increased the work performed by gas phase products.A higher aluminum content increased the energy output while the presence of oxidants slowed the energy release rate.This work demonstrates an effective means of evaluating the performance of aluminized explosives.
基金supported by the National Key Scientific Instruments and Equipment Development Projects of China(No.51427804)the National Science Foundation of Shandong Province(No.ZR2017MEE023)。
文摘Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument for IEERG measurement was developed.Compared with previous setups,the new one which is equipped with three convergent nozzles and quick-release mechanism gets improved in data acquisition and gas sealing and releasing performance.To comprehensively know the effect of gas pressure,particle size,and nozzle area on IEERG,a series of experiments were carried out with this new setup.The variable control test results indicated that the gas pressure-IEERG curves remain the linear trend and the particle size-IEERG curves maintain the negative exponential trend for nozzle areas at 1.13,2.26,and3.39 mm2,respectively.The increase in nozzle area leads to deceases in value of IEERG and absolute value of slope of fitting curves in each test.In addition,the orthogonal experiment showed that the influence of gas pressure,nozzle area,and particle size on IEERG decreases in turn.Only gas pressure had a marked impact on IEERG.This work offers great importance in improving the accuracy of prediction of coal and gas outburst.
基金National Natural Science Foundation of China (Grant No. 12002045)State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (QNKT22-09) to provide fund for conducting experiments。
文摘Titanium hydride(TiH_(2)), a promising high-energy additive, is doped into PTFE/Al to optimize the energy output structure of the reactive jet and strive for better aftereffect damage ability to the target. Six types of PTFE/Al/TiH_(2) reactive liners with different TiH_(2) content are prepared by the molding and sintering method. The energy release characteristics of PTFE/Al/TiH_(2) reactive jet are tested by the transient explosion energy test, and are characterized from pressure and temperature. The reaction delay time,pressure history, and temperature history of the energy release process are obtained, then the actual value of released energy and reaction efficiency of the reactive jet are calculated. The results show that the peak pressure and temperature of the PTFE/Al/TiH_(2) jet initially increase and then decrease with increasing TiH_(2) content. When the TiH_(2) content is 10%, the actual value of released energy and reaction efficiency increased by 24% and 6.4%, respectively, compared to the PTFE/Al jet. The reaction duration of the reactive material is significantly prolonged as the TiH_(2) content increased from 0% to 30%. Finally,combined with the energy release behaviors of PAT material and the dynamic deformation process of liner, the enhancement mechanism of TiH_(2) on energy release of the reactive jet is expounded.
基金supported by the National Natural Science Foundation of China (Grant No.22005143)Young Elite Scientists Sponsorship Program by CAST (Grant No.2022QNRC001)。
文摘To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to successfully prepare the coated spherical propellant for the first time.The effects of fluidized bed coating temperature,air velocity,flow speed and atomization pressure on the adhesion rate,coating integrity and coating uniformity of the coated spherical propellant were investigated,and the preparation of coated spherical propellant with homogeneous size and structural integrity was achieved for the first time.The microscopic morphology,chemical structure,water vapor adsorption behavior,combustion performance,and ageing resistance property of the coated spherical propellant were systematically investigated by,Fourier transforms infrared spectroscopy(FTIR),Micro confocal raman spectrometer,field scanning electron microscopy(SEM),dynamic vapor adsorption techniques,and closed bomb test,confirming the surface core-shell structure and the tightly bonded interfacial structure of coated spherical propellant.Meanwhile,the coated spherical propellant has good hygroscopic,excellent progressive burning and long storage stability.
文摘A new extrapolation approach was proposed to calculate the strain energy release rates of complex cracks. The point_by_point closed method was used to calculate the closed energy, thus the disadvantage of self_inconsistency in some published papers can be avoided. The disadvantage is that the closed energy is repeatedly calculated: when closed nodal number along radial direction is more than two, the displacement of nodes behind the crack tip that is multiplied by nodal forces, the closed energy has been calculated and the crack surfaces have been closed, and that closed energy of middle point is calculated repeatedly. A DCB (double cantilever beam) specimen was calculated and compared with other theoretical results, it is shown that a better coincidence is obtained. In addition the same results are also obtained for compact tension specimen, three point bend specimen and single edge cracked specimen. In comparison with theoretical results,the error can be limited within 1 per cent. This method can be extended to analyze the fracture of composite laminates with various delamination cracks.
基金part of the Australian Coal Association Research Program(ACARP)’s project C26066,entitled "Definition and Quantification of the Energy,Burst Mechanics Required for Coal Bursts and Energy Release Mechanisms"
文摘Coal burst is a manifestation of rapid energy release,which is considered as one of the most critical operational hazards in underground coal mines.This study numerically investigates the effects of discontinuities on the strength and energy release characteristics of coal mass samples under uniaxial compression.The universal distinct element code(UDEC)was used to model pillar-scale coal mass samples that were represented by an assembly of triangular deformable blocks,and pre-existing discontinuities such as bedding planes and cleats were also included in the models.It shows that cleat spacing can have a significant impact on compressive strength and energy release,with both strength and energy release(magnitude and rate)reducing as the number of cleats was increased.This work is one of the first attempts to numerically model and quantify the energy release which occurs during the failure of pillar-scale coal mass samples with varying cleat densities.The insights from the numerical modelling can help to understand the possible energy release mechanisms and associated coal burst potential in changing coal cleat conditions.
文摘In this paper,the fracture problem in non-principal directions of elasticity for a simple layer plate of linear-elastic orthotropic composite materials is studied.The formulae of transformation between characteristic roots,coefficients of elastic compliances in non-principal directions of elasticity and corresponding parameters in principal directions of elasticity are derived.Then,the computing formulae of strain energy release rate under skew-symmetric loading in terms of engineering parameters for principal directions of elasticity are obtained by substituting crack-tip stresses and displacements into the basic formula of the strain energy release rate.
基金Project (2010CB732004) supported by the National Basic Research Program of ChinaProject (51074177) supported by the Joint Funding of National Natural Science Foundation and Shanghai Baosteel Group Corporation,China
文摘The strata deformation in mining area was monitored in Dabaoshan copper-iron mine,and an analytical method of strata energy release was put forward.On the basis of chaotic theory,by reconstructing the phase space for time series data of strata energy release,the saturated embedding dimension and the correlation dimension of the dynamic system were obtained to be 4 and 1.212 8,respectively,and the evolution laws of distances between phase points of strata energy release in the phase space were revealed.With grey theory,a prediction model of strata energy release was set up,the maximum error of which was less than 6.7%.The results show that there are chaotic characters in strata energy release during mining;after reconstructing phase space,the subtle changing characteristics of energy release can be magnified,and the internal rules can be fully demonstrated.According to the laws,a warning system for strata stability in mining area was established to provide a technical safeguard for safe mining.
基金funded by the National Institute of Occupational Health and Science (NIOSH) under Grant Number 200-2016-90154
文摘Quantifying the rockburst consequence is of critical importance to reduce the hazards with preventative measures in underground mines and deep tunnels. Contours of energy components within a pillar model are plotted at different rockmass damage stages, and plastic strain work and released energy are proposed as indicators of rockmass damage consequence. One pillar model under different loading stiffness is simulated to assess indicators of pillar burst and the resulting damages. The results show the rockmass damage under soft loading stiffness has larger magnitude of plastic strain work and released energy than that which is under stiff loading stiffness, indicating the rockburst consequence can be quantified with plastic strain work and released energy in numerical models. With the quantified rockburst consequence,preventative measures can be taken to avoid severe hazards to mine safety.
基金provided by the National Natural Science Foundation of China(No.5137403)the Fundamental Research Funds for the Central Universities(No.FRF-TP-15-042A1)
文摘The stress path characteristics of surrounding rock in the formation of gob were analyzed and the unloading was solved. Taking Chengchao Iron Mine as the engineering background, the model for analyzing the instability of deep gob was established based on the mechanism of stress relief in deep mining.The energy evolution law was analyzed by introducing the local energy release rate index(LERR), and the energy criterion of the instability of surrounding rock was established based on the cusp catastrophe theory. The results show that the evolution equation of the local energy release of the surrounding rock is a quartic function with one unknown and the release rate increases gradually during the mining process.The calculation results show that the gob is stable. The LERR per unit volume of the bottom structure is relatively smaller which means that the stability is better. The LERR distribution showed that there was main energy release in the horizontal direction and energy concentration in the vertical direction which meets the characteristics of deep mining. In summary, this model could effectively calculate the stability of surrounding rock in the formation of gob. The LERR could reflect the dynamic process of energy release,transfer and dissipation and that provided an important reference for the study of the stability of deep mined out area.
基金the Fundamental Research Funds for the Central Universities(No.30920021108)Open Foundation of Hypervelocity Impact Research Center of CARDC(20200106).
文摘Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can increase the lethality of warheads due to their dual functionality.This paper focuses on the energy release characteristics of RM casings prepared by alloy melting and casting process under explosive loading.Explosion experiments of RM and conventional 2A12 aluminum alloy casings were conducted in free field to capture the explosive fireballs,temperature distribution,peak overpressure of the air shock wave and the fracture morphology of fragments of reactive material(RM)warhead casings by using high-speed camera,infrared thermal imager temperature and peak overpressure testing and scanning electron microscope.Results showed that an increase of both the fireball temperature and air shock wave were observed in all RM casings compared to conventional 2A12 aluminum ally casings.The RM casings can improve the peak overpressure of the air shock wave under explosion loading,though the results are different with different charge ratios.According to the energy release characteristics of the RM,increasing the thickness of RM casings will increase the peak overpressure of the near-field air shock wave,while reducing the thickness will increase the peak overpressure of the far-field air shock wave.
基金supported by Liaoning Province Science and Technology Planning Project (2021JH5/10400011& 2020JH2/10200013)the Central Guidance on Local Science and Technology Development Project of Liaoning Province (2021JH6/10500133)Shenyang Agricultural University, high-end talent introduction fund (SYAU20160003)
文摘The molecular mechanisms of energy status related to the umami taste of postharvest shiitake mushrooms during spore release remain poorly understood.In this study,the variations of energy status and umami taste of mushrooms were measured at 25℃.At 24 h storage,slight spore prints of mushrooms were first pictured,respiration peaked.Significant ATP decrease and ADP increase were also observed as the initiation of postharvest senescence(P<0.05).Meanwhile,the activities of phosphohexose isomerase,succinate dehydrogenase,glucose-6-phosphate dehydrogenase and cytochrome c oxidase and the contents of umami nucleotides and amino acids were maintained at higher levels in mushrooms with spore release.Notably,the equivalent umami concentration(EUC)was strongly correlated with energy levels(R=0.80).Fifteen related gene expression levels in the energy metabolism pathway were downregulated.LecpdP1 and LeAK were significantly expressed in the conversion of ATP into AMP and played key roles in connecting the energy state and umami level.These results provided valuable insights on the umami taste associated with energy metabolism mechanism during postharvest mushroom spore release.
基金by the National Natural Science Foundation of China(81872812,82073800)the China Postdoctoral Science Fundation(2021TQ0111,2021M691040).
文摘The siRNA-loaded lipid nanoparticles have attracted much attention due to its significant gene silencing effect and successful marketization.However,the in vivo distribution and release of siRNA still cannot be effectively monitored.In this study,based on the fluorescence resonance energy transfer(FRET)principle,a fluorescence dye Cy5-modified survivin siRNA was conjugated to nanogolds(Au-DR-siRNA),which were then wrapped with lipid nanoparticles(LNPs)for monitoring the release behaviour of siRNA in vivo.The results showed that once Au-DR-siRNA was released from the LNPs and cleaved by the Dicer enzyme to produce free siRNA in cells,the fluorescence of Cy5 would change from quenched state to activated state,showing the location and time of siRNA release.Besides,the LNPs showed a significant antitumor effect by silencing the survivin gene and a CT imaging function superior to iohexol by nanogolds.Therefore,this work provided not only an effective method for monitoring the pharmacokinetic behaviour of LNP-based siRNA,but also a siRNA delivery system for treating and diagnosing tumors.
基金Supported by the National Key Basic Research and Development Program of China (2010CB732003)the National Natural Science Foundation of China (51009013,50909077)
文摘Numerical analysis of the total energy release of surrounding rocks excavated by drill-and-blast (D&B) method and tunnel boring machine (TBM) method is presented in the paper. The stability of deep tunnels during excavation in terms of energy release is also discussed. The simulation results reveal that energy release during blasting excavation is a dynamic process. An intense dynamic effect is captured at large excavation footage. The magnitude of energy release during full-face excavation with D&B method is higher than that with TBM method under the same conditions. The energy release rate (ERR) and speed (ERS) also have similar trends. Therefore, the rockbursts in tunnels excavated by D&B method are frequently encountered and more intensive than those by TBM method. Since the space after tunnel face is occupied by the backup system of TBM, prevention and control of rockbursts are more difficult. Thus, rockbursts in tunnels excavated by TBM method with the same intensity are more harmful than those in tunnels by D&B method. Reducing tunneling rate of TBM seems to be a good means to decrease ERR and risk of rockburst. The rockbursts observed during excavation of headrace tunnels at Jinping II hydropower station in West China confirm the analytical results obtained in this paper.
基金The project supported by the Key Project of Chinese Ministry of Education (03145)the Science Fund of Southwest Jiaotong University
文摘In the fracture problems of hydrophilic elastic materials under coupling effects of heat conduction, moisture diffusion and mechanical deformation, the conventional J-integral is no longer path independent. The value of J is unequal to the energy release rate in hygrothermal coupling cases. In the present paper, we derived a general form of the energy release rate for hygrothermal fracture problems of the hydrophilic elastic materials on the basis of energy balance equation in cracked areas. By introducing the constitutive relations and the essential equations of irreversible thermodynamics, a specific expression of the energy release rate was obtained, and the expression can be reformmulated as path independent integrals, which is equivalent to the energy release rate of the fracture body. The path independence of the integrals is then verified numerically.
基金supported by the National Natural Science Foundation of China(10472053 and 10772098)
文摘In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical simulation. It is found that the small scale SGS stress is much smaller than the large scale SGS stress for all the stress components. The dominant contributor to large scale SGS stress is the cross stress between small scale and subgrid scale motions, while the cross stress between large scale and subgrid scale motions make major contributions to small scale SGS stress. The energy transfer from resolved large scales to subgrid scales is mainly caused by SGS Reynolds stress, while that between resolved small scales and subgrid scales are mainly due to the cross stress. The multiscale formulation of SGS models are evaluated a priori, and it is found that the small- small model is superior to other variants in terms of SGS dissipation.
基金supported by the National Natural Science Foundation of China (Grants 11422216, 11521202)
文摘The fracture behavior of ferroelectrics has been intensively studied in recent decades, though currently a widely accepted fracture mechanism is still lacking. In this work, enlightened by previous experimental observations that crack propagation in ferroelectrics is always accompanied by domain switching, we propose a micromechanical model in which both crack propagation and domain switching are controlled by energy-based criteria. Both electric energy and mechanical energy can induce domain switching, while only mechanical energy can drive crack propagation. Furthermore, constrained domain switching is considered in this model, leading to the gradient domain switching zone near the crack tip. Analysis results show that stress-induced ferroelastic switching always has a toughening effect as the mechanical energy release rate serves as the driving force for both fracture and domain switching. In comparison, the electric-field-induced switching may have either a toughening or detoughening effect. The proposed model can qualitatively agree with the existing experimental results.
基金The project supported by the National Natural Science Foundation of China(10572049)
文摘In this paper, the postbuckling governing equations and the analytical expression of the energy release rates associated with delamination growth in a compression-loaded cylindrical shell are derived by using the variational principle of moving boundary and the Griffith fracture criterion. The finite difference method is used to generate the postbuckling solutions of the delaminated cylindrical shells, and with these solutions, the values of the energy release rates are determined. In simulational examples, the effects of a wide range of parameters, such as delamination sizes and depths, boundary conditions, geometrical parameters, material properties and laminate stacking sequences on the energy release rates of axisymmetrical laminated cylindrical shells are intensively discussed.
文摘An interface crack analysis is presented for further understanding the characteristics of the crack-tip field. The conditions under which the energy release rate components would exist are emphasized and the relations between energy release rate components and the stress intensity factors are given. Combining with the results of chasical plate theory analysis. a closed-form solution for stress intensity factors in terms of external loading as well as some geometric and material parameters for fairly general composite laminates is derived Then. an analytical solution for energy release rate components is deduced. In order to get energy release rate components under general loading condition. a mode mix parameter, Ω, must be determined separately. A methodology for determining Ω is discussed. Finally. several different kinds of laminates are examined and the results obtained could be used in engineering applications.