Delayed coking is an important process consumption and light oil yield are important factors used to convert heavy oils to light products. Energy for evaluating the delayed coking process. This paper analyzes the ener...Delayed coking is an important process consumption and light oil yield are important factors used to convert heavy oils to light products. Energy for evaluating the delayed coking process. This paper analyzes the energy consumption and product yields of delayed coking units in China. The average energy consumption shows a decreasing trend in recent years. The energy consumption of different refineries varies greatly, with the average value of the highest energy consumption approximately twice that of the lowest energy consumption. The factors affecting both energy consumption and product yields were analyzed, and correlation models of energy consumption and product yields were established using a quadratic polynomial. The model coefficients were calculated through least square regression of collected industrial data of delayed coking units. Both models showed good calculation accuracy. The average absolute error of the energy consumption model was approximately 85 MJ/t, and that of the product yield model ranged from 1 wt% to 2.3 wt%. The model prediction showed that a large annual processing capacity and high load rate will result in a reduction in energy consumption.展开更多
Modern agriculture heavily depends on energy consumption, especially fossil energy, but intensive energy input increases the production cost for producers and results in environmental pollution.Organic agricultural pr...Modern agriculture heavily depends on energy consumption, especially fossil energy, but intensive energy input increases the production cost for producers and results in environmental pollution.Organic agricultural production is considered a more sustainable system, but there is lack of scientific research on the energy consumption between organic and conventional systems in China.The analysis and comparison of energy use between the two systems would help decision-makers to establish economic, effective and efficient agricultural production.Thus, the objectives of the present study are to analyze energy inputs, outputs, energy efficiency, and economic benefits between organic and conventional soybean(Glycine max(L.) Merrill) production.A total of 24 organic farmers and 24 conventional farmers in Jilin Province, China, were chosen for investigation in 2010 production year.Total energy input was 71.55 GJ ha–1 and total energy output was 96.18 GJ ha–1 in the organic system, resulting in an energy efficiency(output/input) of 1.34.Total energy input was 9.37 GJ ha–1 and total energy output was 113.4 GJ ha–1 in the conventional system, resulting in the energy efficiency of 12.1.The huge discrepancy in energy inputs and respective efficiencies lies in the several times higher nutrient inputs in the organic compared to the conventional production system.Finally, the production costs ha–1 were 33% higher, and the net income ha–1 25% lower in the organic compared to the conventional soybean production system.It is recommended to improve fertilizer management in organic production to improve its energetic and economic performance.展开更多
In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional un...In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.展开更多
The creation of national energy strategy cannot proceed without accurate projections of future electricity consumption;this is because EC is intimately tied to other forms of energy,such as oil and natural gas.For the...The creation of national energy strategy cannot proceed without accurate projections of future electricity consumption;this is because EC is intimately tied to other forms of energy,such as oil and natural gas.For the purpose of determining and bettering overall energy consumption,there is an urgent requirement for accurate monitoring and calculation of EC at the building level using cutting-edge technology such as data analytics and the internet of things(IoT).Soft computing is a subset of AI that tries to design procedures that are more accurate and reliable,and it has proven to be an effective tool for solving a number of issues that are associated with the use of energy.The use of soft computing for energy prediction is an essential part of the solution to these kinds of challenges.This study presents an improved version of the Harris Hawks Optimization model by combining it with the IHHODL-ECP algorithm for use in Internet of Things settings.The IHHODL-ECP model that has been supplied acts as a useful instrument for the prediction of integrated energy consumption.In order for the raw electrical data to be compatible with the subsequent processing in the IHHODL-ECP model,it is necessary to perform a preprocessing step.The technique of prediction uses a combination of three different kinds of deep learning models,namely DNN,GRU,and DBN.In addition to this,the IHHO algorithm is used as a technique for making adjustments to the hyperparameters.The experimental result analysis of the IHHODL-ECP model is carried out under a variety of different aspects,and the comparison inquiry highlighted the advantages of the IHHODL-ECP model over other present approaches.According to the findings of the experiments conducted with an hourly time resolution,the IHHODL-ECP model obtained a MAPE value of 33.85,which was lower than those produced by the LR,LSTM,and CNN-LSTM models,which had MAPE values of 83.22,44.57,and 34.62 respectively.These findings provided evidence of the IHHODL-ECP model’s improved ability to provide accurate forecasts.展开更多
With the fast development of the application of magnesium based alloys,the demand for primary magnesium is increasing dramatically all over the world.The Pidgeon process is the most widely used process for producing m...With the fast development of the application of magnesium based alloys,the demand for primary magnesium is increasing dramatically all over the world.The Pidgeon process is the most widely used process for producing magnesium in China,but suffers from problems such as high energy,resource consumption and environmental pollution.While the process of vacuum carbothermal reduction to produce magnesium(VCTRM)has attracted more and more attention as its advantages,but it has not been well-practiced in industrial applications and there also is no comprehensive and quantitative analysis of this process.This study quantified the flows of resource and energy for the Pidgeon process and the VCTRM process,then compared and analyzed these two processes with each other from three aspects.The VCTRM process results in 63.14%and 69.16%lower of non-renewable mineral resources and energy consumptions when compared to the Pidgeon process,respectively.Moreover,the low energy consumption(2.675 tce vs.8.681 tce)and material to magnesium ratio(2.953:1 vs.6.429:1)of the VCTRM process,which lead to lower greenhouse gas(GHG)emissions(8.777 t vs.26.337 t)and solid waste generation(0.522 t vs.5.465 t)with a decrease of 66.67%and 90.45%,respectively.Results indicate that the VCTRM process is a more environmentally friendly process for magnesium production with high efficiency but low cost and low pollution,and it shows a good potential to be industrialized in the future after solving the bottleneck problem of the reverse reaction.展开更多
The existing studies on the pelleting process were reviewed, and then the forming process of pelleting was introduced. Furthermore, the models describing the production yield and energy consumption of pelleting were p...The existing studies on the pelleting process were reviewed, and then the forming process of pelleting was introduced. Furthermore, the models describing the production yield and energy consumption of pelleting were presented. Based on the models, the influence of the pelleting structure parameters, die speed on the production yield and energy consumption were discussed. The results showed that larger pellet mill was preferred and the proper speed of the die should be selected to increase the production yield and reduce the energy consumption.展开更多
Energy consumption is one of the important symbols of modern agriculture,and it is also an important input in modern agricultural production. The study on the agricultural energy consumption not only has a positive si...Energy consumption is one of the important symbols of modern agriculture,and it is also an important input in modern agricultural production. The study on the agricultural energy consumption not only has a positive significance to agricultural energy saving,emission reduction and ecological environment protection,but also can greatly reduce the cost of agricultural production and improve the economic benefit of farmers. Through the analysis of the national statistical data about energy consumption for agriculture production from 2005 to 2012 year,the results show that the amount of energy consumption for agricultural production in China has increased year by year since 2005. Because of the continued growth of the total energy consumption in China,the proportion of energy consumption for agricultural production to the total energy consumption of China has declined slightly since 2005. At present,the energy consumption structure for agricultural production in China is diesel fuel,coal,electric power,gasoline,and indirect energy consumption. With the rapid development of the agricultural technology in recent years,the total agricultural output value in China has increased greatly,the direct and indirect agricultural energy consumption per unit of agricultural output value in China has decreased year by year,and the efficiency of energy consumption for agricultural production has increased consequently.展开更多
Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring ...Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.展开更多
Electricity is essential for keeping power networks balanced between supply and demand,especially since it costs a lot to store.The article talks about different deep learning methods that are used to guess how much g...Electricity is essential for keeping power networks balanced between supply and demand,especially since it costs a lot to store.The article talks about different deep learning methods that are used to guess how much green energy different Asian countries will produce.The main goal is to make reliable and accurate predictions that can help with the planning of new power plants to meet rising demand.There is a new deep learning model called the Green-electrical Production Ensemble(GP-Ensemble).It combines three types of neural networks:convolutional neural networks(CNNs),gated recurrent units(GRUs),and feedforward neural networks(FNNs).The model promises to improve prediction accuracy.The 1965–2023 dataset covers green energy generation statistics from ten Asian countries.Due to the rising energy supply-demand mismatch,the primary goal is to develop the best model for predicting future power production.The GP-Ensemble deep learning model outperforms individual models(GRU,FNN,and CNN)and alternative approaches such as fully convolutional networks(FCN)and other ensemble models in mean squared error(MSE),mean absolute error(MAE)and root mean squared error(RMSE)metrics.This study enhances our ability to predict green electricity production over time,with MSE of 0.0631,MAE of 0.1754,and RMSE of 0.2383.It may influence laws and enhance energy management.展开更多
An assessment of the new energy consumption capacity of the grid can help to improve new energy efficiency and its planning and development.The annual capacity of multi-regional new energy consumption is affected by t...An assessment of the new energy consumption capacity of the grid can help to improve new energy efficiency and its planning and development.The annual capacity of multi-regional new energy consumption is affected by the new energy installed capacity of each region,the output of thermal power units,the load size,and the exchange capacity between regional tie lines.In this paper,a real-time data processing method of a province is proposed,and a raw data processing method with dimensionality reduction equivalent is proposed.From the perspective of new installed capacity of new energy across regions,we obtain the assessment of the capacity of wind power photovoltaic bases in a given scenario,and propose new installed capacity for wind,light and energy storage power stations.展开更多
A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy ...A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy produced by hydroelectric plants and coal-fired plants is divided into 4 components: potential energy, kinetic energy, water-deep pressure energy and reservoir energy. A new and important concept, reservoir energy, is proposed, based on which is divided into a number of water bodies, for example 3 water bodies, and a reservoir is analyzed in a new way. This paper presents an optimal scheduling solution of elec-tric energy production of hydro-thermal power systems based on multi-factors analytic method, in which some important factors, such as load demand, reservoir in-flow, water consumption volume increment rate of hydroelectric plants or converted from coal-fired plants, and so on are given to model the objective function and the constraints. A study example with three simulation cases is carried out to illustrate flexibility, adapta-bility, applicability of the proposed method.展开更多
This article introduces a string of energy conservation measures adopted over the past sev- eral years by the RFCC unit at Shengli Petrochemical Complex, including the optimization of feedstock properties, the adoptio...This article introduces a string of energy conservation measures adopted over the past sev- eral years by the RFCC unit at Shengli Petrochemical Complex, including the optimization of feedstock properties, the adoption of high-efficiency atomizing nozzles, the revamp of CO boiler, the atomization by means of dry gas, the post-burning of flue gas as well as the application of frequency converting machines and pumps, resulting in ideal effects. The energy consumption of the RFCC unit was gradually decreased to 2984.25 MJ/t from the original level of 3716.99 MJ/t. After comparing basic energy con- sumption values with actual consumption values, the authors have set forward measures for further energy conservation, such as the recovery of low-temperature excess heat contained in oil/gas streams exiting from the fractionation tower top, addition of the fourth cyclone, delivery of hot oil slurry, and heat tracing with hot water.展开更多
Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical str...Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.展开更多
On July 12, Xie Fuzhan, Commissioner of National Bureau of Statistics of China attended the press conference held by State Council Information Office, and delivered the report on China's national unit GDP energy con...On July 12, Xie Fuzhan, Commissioner of National Bureau of Statistics of China attended the press conference held by State Council Information Office, and delivered the report on China's national unit GDP energy consumption in 2006, presenting with major indicators of unit GDP energy consumption both at national and regional levels in the year 2006.展开更多
Because of the high energy demand required to heat a production hall, the aim of this project is to find out whether it is possible to verify the heating consuming process for heating with the standard simplified calc...Because of the high energy demand required to heat a production hall, the aim of this project is to find out whether it is possible to verify the heating consuming process for heating with the standard simplified calculation method [1], especially for cold regions such as Kosice (Slovakia). The energy requirement for heating a case study industrial building was evaluated using measurements and calculations.During the winter period, energy consumption was measured in the selected industrial building according to a validation standard [2]. The building is comprised of two halls. The measurements were analyzed according to the criteria used for validating residential and public buildings, with several regression dependencies taken into account in the resulting evaluation of heating energy consumption. The mathematical dependencies of measured values in real conditions are shown in this paper. In addition, the building’s heating energy demand was calculated according to the Austrian standard [3], ?NORM EN ISO 13790, the simplified calculation method for non-residential buildings. It was investigated whether the measured values could be replicated using this calculation. It was found that the precise definition of the internal heat gains is very important.展开更多
The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors ...The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.展开更多
Load behavior is one of the most critical factors affecting mills' energy consumption and grinding efficiency, and is greatly affected by the liner profiles. Generally, as liner profiles vary, the ball mill performan...Load behavior is one of the most critical factors affecting mills' energy consumption and grinding efficiency, and is greatly affected by the liner profiles. Generally, as liner profiles vary, the ball mill performances are extremely different. In order to study the performance of the ball mill with regular polygon angle-spiral liners(RPASLs), experimental and numerical studies on three types of RPASLs, including regular quadrilateral, pentagonal and hexagonal, are carried out. For the fine product of desired size, two critical parameters are analyzed: the energy input to the mill per unit mass of the fine product, E*, and the rate of production of the fine product, F*. Results show that the optimal structure of RPASLs is Quadrilateral ASL with an assembled angle of 50°. Under this condition, the specific energy consumption E* has the minimum value of 303 J per fine product and the production rate F* has the maximum value of 0.323. The production rate F* in the experimental result is consistent with the specific collision energy intensity to total collision energy intensity ratio Es/Et in the simulation. The relations between the production rate F* and the specific energy consumption E* with collision energy intensity Es and Et are obtained. The simulation result reveals the essential reason for the experimental phenomenon and correlates the mill performance parameter to the collision energy between balls, which could guide the practical application for Quadrilateral ASL.展开更多
Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing...Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is. discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.展开更多
Rope shovels are used to dig and load materials in surface mines. One of the main factors that influence the production rate and energy consumption of rope shovels is the performance of the operator. This paper presen...Rope shovels are used to dig and load materials in surface mines. One of the main factors that influence the production rate and energy consumption of rope shovels is the performance of the operator. This paper presents a method for evaluating rope shovel operators using the Multi-Attribute Decision-Making (MADM) model. Data used in this research were collected from an operating surface coal mine in the southern United States. The MADM model consists of attributes, their weights of importance, and alter- natives. Shovel operators are considered the alternatives, The energy consumption model was developed with multiple regression analysis, and its variables were included in the MADM model as attributes. Preferences with respect to min/max of the defined attributes were obtained with multi-objective opti- mization. Multi-objective optimization was conducted with the overall goal of minimizing energy con- sumption and maximizing production rate. Weights of importance of the attributes were determined by the Analytical Hierarchy Process (AHP), The overall evaluation of operators was performed by one of the MADM models, i.e., PROMETHEE If. The research results presented here may be used by mining professionals to held evaluate the performance of rode shovel operators in surface mining.展开更多
This paper discusses the specific features of the energy in China, and addresses those key challenges in China is that the co\|exist of (1) higher total energy production and lower per capita level; (2) lower per capi...This paper discusses the specific features of the energy in China, and addresses those key challenges in China is that the co\|exist of (1) higher total energy production and lower per capita level; (2) lower per capita energy resources level with unrational energy consumption structure; (3) lower energy utilization efficiency and higher energy conservation potential; and (4) unequal distribution of energy resources. It reviews the key environmental problems related to the feature of energy production and consumption. Based on the analysis, the author furthers addresses the policy and actions needed.展开更多
文摘Delayed coking is an important process consumption and light oil yield are important factors used to convert heavy oils to light products. Energy for evaluating the delayed coking process. This paper analyzes the energy consumption and product yields of delayed coking units in China. The average energy consumption shows a decreasing trend in recent years. The energy consumption of different refineries varies greatly, with the average value of the highest energy consumption approximately twice that of the lowest energy consumption. The factors affecting both energy consumption and product yields were analyzed, and correlation models of energy consumption and product yields were established using a quadratic polynomial. The model coefficients were calculated through least square regression of collected industrial data of delayed coking units. Both models showed good calculation accuracy. The average absolute error of the energy consumption model was approximately 85 MJ/t, and that of the product yield model ranged from 1 wt% to 2.3 wt%. The model prediction showed that a large annual processing capacity and high load rate will result in a reduction in energy consumption.
文摘Modern agriculture heavily depends on energy consumption, especially fossil energy, but intensive energy input increases the production cost for producers and results in environmental pollution.Organic agricultural production is considered a more sustainable system, but there is lack of scientific research on the energy consumption between organic and conventional systems in China.The analysis and comparison of energy use between the two systems would help decision-makers to establish economic, effective and efficient agricultural production.Thus, the objectives of the present study are to analyze energy inputs, outputs, energy efficiency, and economic benefits between organic and conventional soybean(Glycine max(L.) Merrill) production.A total of 24 organic farmers and 24 conventional farmers in Jilin Province, China, were chosen for investigation in 2010 production year.Total energy input was 71.55 GJ ha–1 and total energy output was 96.18 GJ ha–1 in the organic system, resulting in an energy efficiency(output/input) of 1.34.Total energy input was 9.37 GJ ha–1 and total energy output was 113.4 GJ ha–1 in the conventional system, resulting in the energy efficiency of 12.1.The huge discrepancy in energy inputs and respective efficiencies lies in the several times higher nutrient inputs in the organic compared to the conventional production system.Finally, the production costs ha–1 were 33% higher, and the net income ha–1 25% lower in the organic compared to the conventional soybean production system.It is recommended to improve fertilizer management in organic production to improve its energetic and economic performance.
基金funded by the National Key R&D Program of China,Grant Number 2019YFB1505400.
文摘In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.
文摘The creation of national energy strategy cannot proceed without accurate projections of future electricity consumption;this is because EC is intimately tied to other forms of energy,such as oil and natural gas.For the purpose of determining and bettering overall energy consumption,there is an urgent requirement for accurate monitoring and calculation of EC at the building level using cutting-edge technology such as data analytics and the internet of things(IoT).Soft computing is a subset of AI that tries to design procedures that are more accurate and reliable,and it has proven to be an effective tool for solving a number of issues that are associated with the use of energy.The use of soft computing for energy prediction is an essential part of the solution to these kinds of challenges.This study presents an improved version of the Harris Hawks Optimization model by combining it with the IHHODL-ECP algorithm for use in Internet of Things settings.The IHHODL-ECP model that has been supplied acts as a useful instrument for the prediction of integrated energy consumption.In order for the raw electrical data to be compatible with the subsequent processing in the IHHODL-ECP model,it is necessary to perform a preprocessing step.The technique of prediction uses a combination of three different kinds of deep learning models,namely DNN,GRU,and DBN.In addition to this,the IHHO algorithm is used as a technique for making adjustments to the hyperparameters.The experimental result analysis of the IHHODL-ECP model is carried out under a variety of different aspects,and the comparison inquiry highlighted the advantages of the IHHODL-ECP model over other present approaches.According to the findings of the experiments conducted with an hourly time resolution,the IHHODL-ECP model obtained a MAPE value of 33.85,which was lower than those produced by the LR,LSTM,and CNN-LSTM models,which had MAPE values of 83.22,44.57,and 34.62 respectively.These findings provided evidence of the IHHODL-ECP model’s improved ability to provide accurate forecasts.
基金the Yunnan Ten Thousand Talents Plan Industrial Technology Champion Project Foundation of China(No.YNWR-CYJS-2018-015)Basic Research Project of Yunnan Province(No.2019FB080).
文摘With the fast development of the application of magnesium based alloys,the demand for primary magnesium is increasing dramatically all over the world.The Pidgeon process is the most widely used process for producing magnesium in China,but suffers from problems such as high energy,resource consumption and environmental pollution.While the process of vacuum carbothermal reduction to produce magnesium(VCTRM)has attracted more and more attention as its advantages,but it has not been well-practiced in industrial applications and there also is no comprehensive and quantitative analysis of this process.This study quantified the flows of resource and energy for the Pidgeon process and the VCTRM process,then compared and analyzed these two processes with each other from three aspects.The VCTRM process results in 63.14%and 69.16%lower of non-renewable mineral resources and energy consumptions when compared to the Pidgeon process,respectively.Moreover,the low energy consumption(2.675 tce vs.8.681 tce)and material to magnesium ratio(2.953:1 vs.6.429:1)of the VCTRM process,which lead to lower greenhouse gas(GHG)emissions(8.777 t vs.26.337 t)and solid waste generation(0.522 t vs.5.465 t)with a decrease of 66.67%and 90.45%,respectively.Results indicate that the VCTRM process is a more environmentally friendly process for magnesium production with high efficiency but low cost and low pollution,and it shows a good potential to be industrialized in the future after solving the bottleneck problem of the reverse reaction.
文摘The existing studies on the pelleting process were reviewed, and then the forming process of pelleting was introduced. Furthermore, the models describing the production yield and energy consumption of pelleting were presented. Based on the models, the influence of the pelleting structure parameters, die speed on the production yield and energy consumption were discussed. The results showed that larger pellet mill was preferred and the proper speed of the die should be selected to increase the production yield and reduce the energy consumption.
文摘Energy consumption is one of the important symbols of modern agriculture,and it is also an important input in modern agricultural production. The study on the agricultural energy consumption not only has a positive significance to agricultural energy saving,emission reduction and ecological environment protection,but also can greatly reduce the cost of agricultural production and improve the economic benefit of farmers. Through the analysis of the national statistical data about energy consumption for agriculture production from 2005 to 2012 year,the results show that the amount of energy consumption for agricultural production in China has increased year by year since 2005. Because of the continued growth of the total energy consumption in China,the proportion of energy consumption for agricultural production to the total energy consumption of China has declined slightly since 2005. At present,the energy consumption structure for agricultural production in China is diesel fuel,coal,electric power,gasoline,and indirect energy consumption. With the rapid development of the agricultural technology in recent years,the total agricultural output value in China has increased greatly,the direct and indirect agricultural energy consumption per unit of agricultural output value in China has decreased year by year,and the efficiency of energy consumption for agricultural production has increased consequently.
基金financial support from The University of Manchester to cover his PhD tuition fees for him to carry out this workChina National High-end Foreign Experts Recruitment Plan Project (G2023018001L) for partially supporting the work。
文摘Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.
基金funded by the Academy of Finland and the University of Vassa,Finland.
文摘Electricity is essential for keeping power networks balanced between supply and demand,especially since it costs a lot to store.The article talks about different deep learning methods that are used to guess how much green energy different Asian countries will produce.The main goal is to make reliable and accurate predictions that can help with the planning of new power plants to meet rising demand.There is a new deep learning model called the Green-electrical Production Ensemble(GP-Ensemble).It combines three types of neural networks:convolutional neural networks(CNNs),gated recurrent units(GRUs),and feedforward neural networks(FNNs).The model promises to improve prediction accuracy.The 1965–2023 dataset covers green energy generation statistics from ten Asian countries.Due to the rising energy supply-demand mismatch,the primary goal is to develop the best model for predicting future power production.The GP-Ensemble deep learning model outperforms individual models(GRU,FNN,and CNN)and alternative approaches such as fully convolutional networks(FCN)and other ensemble models in mean squared error(MSE),mean absolute error(MAE)and root mean squared error(RMSE)metrics.This study enhances our ability to predict green electricity production over time,with MSE of 0.0631,MAE of 0.1754,and RMSE of 0.2383.It may influence laws and enhance energy management.
文摘An assessment of the new energy consumption capacity of the grid can help to improve new energy efficiency and its planning and development.The annual capacity of multi-regional new energy consumption is affected by the new energy installed capacity of each region,the output of thermal power units,the load size,and the exchange capacity between regional tie lines.In this paper,a real-time data processing method of a province is proposed,and a raw data processing method with dimensionality reduction equivalent is proposed.From the perspective of new installed capacity of new energy across regions,we obtain the assessment of the capacity of wind power photovoltaic bases in a given scenario,and propose new installed capacity for wind,light and energy storage power stations.
文摘A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy produced by hydroelectric plants and coal-fired plants is divided into 4 components: potential energy, kinetic energy, water-deep pressure energy and reservoir energy. A new and important concept, reservoir energy, is proposed, based on which is divided into a number of water bodies, for example 3 water bodies, and a reservoir is analyzed in a new way. This paper presents an optimal scheduling solution of elec-tric energy production of hydro-thermal power systems based on multi-factors analytic method, in which some important factors, such as load demand, reservoir in-flow, water consumption volume increment rate of hydroelectric plants or converted from coal-fired plants, and so on are given to model the objective function and the constraints. A study example with three simulation cases is carried out to illustrate flexibility, adapta-bility, applicability of the proposed method.
文摘This article introduces a string of energy conservation measures adopted over the past sev- eral years by the RFCC unit at Shengli Petrochemical Complex, including the optimization of feedstock properties, the adoption of high-efficiency atomizing nozzles, the revamp of CO boiler, the atomization by means of dry gas, the post-burning of flue gas as well as the application of frequency converting machines and pumps, resulting in ideal effects. The energy consumption of the RFCC unit was gradually decreased to 2984.25 MJ/t from the original level of 3716.99 MJ/t. After comparing basic energy con- sumption values with actual consumption values, the authors have set forward measures for further energy conservation, such as the recovery of low-temperature excess heat contained in oil/gas streams exiting from the fractionation tower top, addition of the fourth cyclone, delivery of hot oil slurry, and heat tracing with hot water.
基金Supported by the National Natural Science Foundation of China(61374166,6153303)the Doctoral Fund of Ministry of Education of China(20120010110010)the Fundamental Research Funds for the Central Universities(YS1404,JD1413,ZY1502)
文摘Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.
文摘On July 12, Xie Fuzhan, Commissioner of National Bureau of Statistics of China attended the press conference held by State Council Information Office, and delivered the report on China's national unit GDP energy consumption in 2006, presenting with major indicators of unit GDP energy consumption both at national and regional levels in the year 2006.
基金the project ITMS“26220220050”—Architectural,Structural,technological and economical aspects of energy efficiency building designfinancially supported by the EU structural resources within operative program of research and development OPVaV-2008/2.2/01-SORO.
文摘Because of the high energy demand required to heat a production hall, the aim of this project is to find out whether it is possible to verify the heating consuming process for heating with the standard simplified calculation method [1], especially for cold regions such as Kosice (Slovakia). The energy requirement for heating a case study industrial building was evaluated using measurements and calculations.During the winter period, energy consumption was measured in the selected industrial building according to a validation standard [2]. The building is comprised of two halls. The measurements were analyzed according to the criteria used for validating residential and public buildings, with several regression dependencies taken into account in the resulting evaluation of heating energy consumption. The mathematical dependencies of measured values in real conditions are shown in this paper. In addition, the building’s heating energy demand was calculated according to the Austrian standard [3], ?NORM EN ISO 13790, the simplified calculation method for non-residential buildings. It was investigated whether the measured values could be replicated using this calculation. It was found that the precise definition of the internal heat gains is very important.
基金Supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program(Grant No.294931)National Science Foundation of China(Grant No.51175262)+1 种基金Jiangsu Provincial Science Foundation for Excellent Youths of China(Grant No.BK2012032)Jiangsu Provincial Industry-Academy-Research Grant of China(Grant No.BY201220116)
文摘The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675484,51275474,51505424)Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LZ12E05002,LY15E050019)
文摘Load behavior is one of the most critical factors affecting mills' energy consumption and grinding efficiency, and is greatly affected by the liner profiles. Generally, as liner profiles vary, the ball mill performances are extremely different. In order to study the performance of the ball mill with regular polygon angle-spiral liners(RPASLs), experimental and numerical studies on three types of RPASLs, including regular quadrilateral, pentagonal and hexagonal, are carried out. For the fine product of desired size, two critical parameters are analyzed: the energy input to the mill per unit mass of the fine product, E*, and the rate of production of the fine product, F*. Results show that the optimal structure of RPASLs is Quadrilateral ASL with an assembled angle of 50°. Under this condition, the specific energy consumption E* has the minimum value of 303 J per fine product and the production rate F* has the maximum value of 0.323. The production rate F* in the experimental result is consistent with the specific collision energy intensity to total collision energy intensity ratio Es/Et in the simulation. The relations between the production rate F* and the specific energy consumption E* with collision energy intensity Es and Et are obtained. The simulation result reveals the essential reason for the experimental phenomenon and correlates the mill performance parameter to the collision energy between balls, which could guide the practical application for Quadrilateral ASL.
文摘Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is. discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.
文摘Rope shovels are used to dig and load materials in surface mines. One of the main factors that influence the production rate and energy consumption of rope shovels is the performance of the operator. This paper presents a method for evaluating rope shovel operators using the Multi-Attribute Decision-Making (MADM) model. Data used in this research were collected from an operating surface coal mine in the southern United States. The MADM model consists of attributes, their weights of importance, and alter- natives. Shovel operators are considered the alternatives, The energy consumption model was developed with multiple regression analysis, and its variables were included in the MADM model as attributes. Preferences with respect to min/max of the defined attributes were obtained with multi-objective opti- mization. Multi-objective optimization was conducted with the overall goal of minimizing energy con- sumption and maximizing production rate. Weights of importance of the attributes were determined by the Analytical Hierarchy Process (AHP), The overall evaluation of operators was performed by one of the MADM models, i.e., PROMETHEE If. The research results presented here may be used by mining professionals to held evaluate the performance of rode shovel operators in surface mining.
文摘This paper discusses the specific features of the energy in China, and addresses those key challenges in China is that the co\|exist of (1) higher total energy production and lower per capita level; (2) lower per capita energy resources level with unrational energy consumption structure; (3) lower energy utilization efficiency and higher energy conservation potential; and (4) unequal distribution of energy resources. It reviews the key environmental problems related to the feature of energy production and consumption. Based on the analysis, the author furthers addresses the policy and actions needed.