The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodi...The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodies and the floating central platform capture multi-point wave energy simultaneously. The converter was simplified as a forced vibration system with three degrees of freedom, namely two heave motions and one rotational motion. The expressions of the amplitude-frequency response and the wave energy capture width were deduced from the motion equations of the converter. Based on the built mathematical model, the effects of the PTO damping coefficient, the PTO elastic coefficient, the connection length between the oscillating body and central platform, and the total number of oscillating bodies on the performance of the wave energy converter were investigated. Numerical results indicate that the dynamical properties and the energy conversion efficiency are related not only to the incident wave circle frequency but also to the converter’s physical parameters and interior PTO coefficients. By adjusting the connection length, higher wave energy absorption efficiencies can be obtained. More oscillating bodies installed result in more stable floating central platform and higher wave energy conversion efficiency.展开更多
This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This t...This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This tool is open to all users to carry out their own analyses,but also to contributors who wish to add their data to the database in order to improve the relevance of the comparisons made,and ultimately to improve the efficiency of CO_(2)conversion by plasma-catalysis.The creation of this database and database user interface is motivated by the fact that plasma-catalysis is a fast-growing field for all CO_(2)conversion processes,be it methanation,dry reforming of methane,methanolisation,or others.As a result of this rapid increase,there is a need for a set of standard procedures to rigorously compare performances of different systems.However,this is currently not possible because the fundamental mechanisms of plasma-catalysis are still too poorly understood to define these standard procedures.Fortunately however,the accumulated data within the CO_(2)plasma-catalysis community has become large enough to warrant so-called“big data”studies more familiar in the fields of medicine and the social sciences.To enable comparisons between multiple data sets and make future research more effective,this work proposes the first database on CO_(2)conversion performances by plasma-catalysis open to the whole community.This database has been initiated in the framework of a H_(2)0_(2)0 European project and is called the“PIONEER Data Base”.The database gathers a large amount of CO_(2)conversion performance data such as conversion rate,energy efficiency,and selectivity for numerous plasma sources coupled with or without a catalyst.Each data set is associated with metadata describing the gas mixture,the plasma source,the nature of the catalyst,and the form of coupling with the plasma.Beyond the database itself,a data extraction tool with direct visualisation features or advanced filtering functionalities has been developed and is available online to the public.The simple and fast visualisation of the state of the art puts new results into context,identifies literal gaps in data,and consequently points towards promising research routes.More advanced data extraction illustrates the impact that the database can have in the understanding of plasma-catalyst coupling.Lessons learned from the review of a large amount of literature during the setup of the database lead to best practice advice to increase comparability between future CO_(2)plasma-catalytic studies.Finally,the community is strongly encouraged to contribute to the database not only to increase the visibility of their data but also the relevance of the comparisons allowed by this tool.展开更多
Ramp-up experiments by means of lower hybrid wave on HT-7 superconducting tokamak have been performed and analyzed. A ramp-up rate of over 300 kA/s is obtained and a conversion efficiency of over 1.0% has been achieve...Ramp-up experiments by means of lower hybrid wave on HT-7 superconducting tokamak have been performed and analyzed. A ramp-up rate of over 300 kA/s is obtained and a conversion efficiency of over 1.0% has been achieved during the ramp-up phase. The study of the dependence of conversion efficiency on plasma density shows that the conversion efficiency is affected by the driven current, which is mainly dominated by the competition of impurity concentration with wave accessibility condition. In addition, the effect of current profile may play an important role in determining the conversion efficiency.展开更多
Conversion of CO2 into CO using plasma processing powered by renewable energy is a promising method to convert intermittent sustainable electricity into storable chemical energy.Despite extensive research efforts worl...Conversion of CO2 into CO using plasma processing powered by renewable energy is a promising method to convert intermittent sustainable electricity into storable chemical energy.Despite extensive research efforts worldwide,there is currently no process that achieves economically viable values for both CO2 conversion fraction and energy recovery efficiency simultaneously.Here we demonstrate that a process that utilizes the Boudouard reaction,CO^2++C→2 CO,driven by a thermal plasma allows both 95%CO2 conversion to CO and energy recovery efficiency of 70%,values far higher than seen so far.By comparing the conversion process with and without CO2 excitation by a plasma and by using optical emission spectroscopy we show that the improved performance is due to a novel mode of operation where CO2 is pyrolyzed into an active mixture of CO,O and O2 by an arc discharge which is then introduced into a fixed bed to interact with carbon material.In this way,the free oxygen in the mixture combusts with carbon to form CO,and residual plasma excited CO2 is reduced by carbon.In the overall process,the endothermic Boudouard reaction is partially replaced by an exothermic reaction,and the excess electric energy to produce CO2 plasma is reused in the carbon bed.展开更多
In this work,the effects of externally applied axial pressure gradients and transverse magnetic fields on the electrokinetic energy conversion(EKEC)efficiency and the streaming potential of nanofluids through a microa...In this work,the effects of externally applied axial pressure gradients and transverse magnetic fields on the electrokinetic energy conversion(EKEC)efficiency and the streaming potential of nanofluids through a microannulus are studied.The analytical solution for electro-magneto-hydro-dynamic(EMHD)flow is obtained under the condition of the Debye-Huuckel linearization.Especially,Green’s function method is used to obtain the analytical solutions of the velocity field.The result shows that the velocity distribution is characterized by the dimensionless frequency?,the Hartmann number Ha,the volume fraction of the nanoparticlesφ,the geometric radius ratio a,and the wallζpotential ratio b.Moreover,the effects of three kinds of periodic excitations are compared and discussed.The results also show that the periodic excitation of the square waveform is more effective in increasing the streaming potential and the EKEC efficiency.It is worth noting that adjusting the wallζpotential ratio and the geometric radius ratio can affect the streaming potential and the EKEC efficiency.展开更多
Energy conversion in micro/nano-systems is a subject of current research,among which the electrokinetic energy conversion has attracted extensive attention.However,there exist two different definitions on the electrok...Energy conversion in micro/nano-systems is a subject of current research,among which the electrokinetic energy conversion has attracted extensive attention.However,there exist two different definitions on the electrokinetic energy conversion efficiency in literature.A few researchers defined the efficiency using the pure pressure-driven flow rate,while other groups defined the efficiency based on the flow rate with the inclusion of the effect of the streaming potential field.In this work,both definitions are investigated for different fluid types under the periodic electrokinetic flow condition.For Newtonian fluids,the two definitions give similar results.However,for viscoelastic fluids,these two definitions lead to significant difference.The efficiency defined by the pure pressure-driven flow rate even exceeds 100%in a certain range of the parameters.The result shows that in the case of viscoelastic flow,it is incorrect to define the energy conversion efficiency by pure pressure-driven flow rate.At the same time,the reason for this problem is clarified through comprehensive analysis.展开更多
The autothermic pyrolysis in-situ conversion process (ATS) consumes latent heat of residual organic matter after kerogen pyrolysis by oxidation reaction, and it has the advantages of low development cost and exploitat...The autothermic pyrolysis in-situ conversion process (ATS) consumes latent heat of residual organic matter after kerogen pyrolysis by oxidation reaction, and it has the advantages of low development cost and exploitation of deep oil shale resources. However, the heating mechanism and the characteristic of different reaction zones are still unclear. In this study, an ATS numerical simulation model was proposed for the development of oil shale, which considers the pyrolysis of kerogen, high-temperature oxidation, and low-temperature oxidation. Based on the above model, the mechanism of the ATS was analyzed and the effects of preheating temperature, O_(2) content, and injection rate on recovery factor and energy efficiency were studied. The results showed that the ATS in the formation can be divided into five characteristic zones by evolution of the oil and O_(2) distribution, and the solid organic matter, including residue zone, autothermic zone, pyrolysis zone, preheating zone, and original zone. Energy efficiency was much higher for the ATS than for the high-temperature nitrogen injection in-situ conversion process (HNICP). There is a threshold value of the preheating temperature, the oil content, and the injection rate during the ATS, which is 400 °C, 0.18, and 1100 m3/day, respectively, in this study.展开更多
In the past two decades,a lot of high-capacity conversion-type metal oxides have been intensively studied as alternative anode materials for Li-ion batteries with higher energy density.Unfortunately,their large voltag...In the past two decades,a lot of high-capacity conversion-type metal oxides have been intensively studied as alternative anode materials for Li-ion batteries with higher energy density.Unfortunately,their large voltage hysteresis(0.8-1.2 V) within reversed conversion reactions results in huge round-trip inefficiencies and thus lower energy efficiency(50%-75%) in full cells than those with graphite anodes.This remains a long-term open question and has been the most serious drawback toward application of metal oxide anodes.Here we clarify the origins of voltage hysteresis in the typical SnO2anode and propose a universal strategy to minimize it.With the established in situ phosphating to generate metal phosphates during reversed conversion reactions in synergy with boosted reaction kinetics by the added P and Mo,the huge voltage hysteresis of 0.9 V in SnO_(2),SnO_(2)-Mo,and 0.6 V in SnO2-P anodes is minimized to 0.3 V in a ternary SnO_(2)-Mo-P(SOMP) composite,along with stable high capacity of 936 mA h g^(-1)after 800 cycles.The small voltage hysteresis can remain stable even the SOMP anode operated at high current rate of10 A g^(-1)and wide-range temperatures from 60 to 30℃,resulting in a high energy efficiency of88.5% in full cells.This effective strategy to minimize voltage hysteresis has also been demonstrated in Fe2O3,Co3O4-basded conversion-type anodes.This work provides important guidance to advance the high-capacity metal oxide anodes from laboratory to industrialization.展开更多
We study a radio frequency(RF) wireless energy transfer(WET) enabled multiple input multiple output(MIMO) system. A time slotted transmission pattern is considered. Each slot can be divided into two phases, downlink(D...We study a radio frequency(RF) wireless energy transfer(WET) enabled multiple input multiple output(MIMO) system. A time slotted transmission pattern is considered. Each slot can be divided into two phases, downlink(DL) WET and uplink(UL) wireless information transmission(WIT). Since energy conversion efficiency of the energy harvesting circuits are non.linear, the conventional linear model leads to a mismatch for resource allocation. In this paper, the power allocation algorithm considering the practical non.linear energy harvesting circuits is studied. The optimization problem is formulated to maximize the energy efficiency of system with multiple constraints, i.e., the transmission power, the received power and the minimum harvested energy, which is a non.convex problem. We transform the objective function from fractional form into an equivalent objective function in subtractive form and provide an iterative power allocation algorithm to achieve the optimal solution. Numerical results show that our proposed algorithm with the non.linear RF energy conversion models can achieve much better performance than the algorithm with the conventional linear model.展开更多
Electrosynthesis has recently attracted intensive research attentions and holds great potential in implementing scalable green synthesis thanks to more and more readily accessible renewable electric energy.
One of the most promising solar cell devices is cadmium telluride (CdTe) based. These cells however, have their own problems of stability and degradation in efficiency. Measurements show that CdS/CdTe solar cell has h...One of the most promising solar cell devices is cadmium telluride (CdTe) based. These cells however, have their own problems of stability and degradation in efficiency. Measurements show that CdS/CdTe solar cell has high series resistance which degrades the performance of solar cell energy conversion. Both active layers (CdS and CdTe) had been fabricated by thermal evaporation and tested individually. It was found that CdS window layer of 300 nm have the lowest series resistance with maximum light absorption. While 5 - 7 μm CdTe absorber layer absorbed more than 90% of the incident light with minimum series resistance. A complete CdS/CdTe solar cell was fabricated and tested. It was found that deposited cell without heat treatment shows that the short circuit current increment decreases as the light intensity increases. This type of deposited cell has low conversion efficiency. The energy conversion efficiency was improved by heat treatment, depositing heavily doped layer at the back of the cell and minimizing the contact resistivity by depositing material with resistivity less than 1 m??cm2. All these modifications were not enough because the back contact is non-ohmic. Tunnel diode of CdTe (p++)/CdS (n++) was deposited in the back of the cell. The energy conversion efficiency was improved by more than 7%.展开更多
With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer, an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoe...With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer, an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoelectricity theory. It can be found that the energy conversion efficiency of the rainbow shape piezoelectric transducer mainly depends on its shape parameters and ma- terial properties from the analysis model. Simulation results show that there is an optimal length ratio to generate maximum en- ergy conversion efficiency and the optimal length ratios and energy conversion efficiencies of beryllium bronze substrate trans- ducer and steel substrate transducer are (0.65, 2.21%) and (0.65, 1.64%) respectively. The optimal thickness ratios and energy conversion efficieneies of beryllium bronze substrate transducer and steel substrate transducer are (1.16, 2.56%) and (1.49, 1.57%) respectively. With the increase of width ratio and initial curvature radius, both the energy conversion efficiencies de- crease. Moreover, beryllium bronze flexible substrate transducer is superior to the steel flexible substrate transducer.展开更多
The growing search for clean and renewable energy sources has given rise to the studies of exploring sea wave energy. This paper is concerned with the numerical evaluation of the main operational principle of a submer...The growing search for clean and renewable energy sources has given rise to the studies of exploring sea wave energy. This paper is concerned with the numerical evaluation of the main operational principle of a submerged plate employed for the conversion of wave energy into electrical one. The numerical model used to solve the conservation equations of mass, momentum and transport of volume fraction is based on the finite volume method (FVM). In order to tackle with the flow of mixture of air-water and its interaction with the device, the multiphase model volume of fluid (VOF) is employed. The purpose of this study is the evaluation of a numerical model for improvement of the knowledge about the submerged plate wave energy converter, as well as the investigation of the effect of the distance from the plate to the bottom of the sea (HP) on the performance of the converter. The simulations for several distances of the plate from the seabed show that the optimal efficiency is 64%, which is obtained for HP=0.53 m (88% of the depth). This efficiency is 17% larger than that found in the worst case (HP=0.46 m, 77% of the depth).展开更多
Based on two- and three-dimensional potential flow theories, the width effects on the hydrodynamics of a bottom-hinged trapezoidal pendulum wave energy converter are discussed. The two-dimensional eigenfunction expans...Based on two- and three-dimensional potential flow theories, the width effects on the hydrodynamics of a bottom-hinged trapezoidal pendulum wave energy converter are discussed. The two-dimensional eigenfunction expansion method is used to obtain the diffraction and radiation solutions when the converter width tends to be infinity. The trapezoidal section of the converter is approximated by a rectangular section for simplification. The nonlinear viscous damping effects are accounted for by including a drag term in the two- and three-dimensional methods. It is found that the three- dimensional results are in good agreement with the two-dimensional results when the converter width becomes larger, especially when the converter width is infinity, which shows that both of the methods are reasonable. Meantime, it is also found that the peak value of the conversion efficiency decreases as the converter width increases in short wave periods while increases when the converter width increases in long wave periods.展开更多
This paper is focused on a wireless energy harvesting system using a rectifying antenna (rectenna). The proposed device consists of a wideband cross-dipole antenna, a microwave low-pass filter and a doubling rectifyin...This paper is focused on a wireless energy harvesting system using a rectifying antenna (rectenna). The proposed device consists of a wideband cross-dipole antenna, a microwave low-pass filter and a doubling rectifying circuit using Shottcky diodes as rectifying elements. Previously, a few of wideband rectennas have been investigated at 1.7 to 2.5 GHz. The originality of this paper is on the new wideband rectenna design which can harvest the ambient radio frequency (RF) power at 1.7 to 2.5 GHz. In this system, a new wideband cross dipole is designed and used to achieve the required bandwidth and duel-polarization. In addition, the voltage doubling rectifying circuit is optimized to achieve the best performance at power density levels 2 which are typical in urban environments. The characteristics of the proposed rectenna over the desired frequency range are investigated, and the integrated rectenna is simulated, made and tested for low input power densities from 5 to 200 μW/cm2. The simulation and measurement results of the rectenna are compared and a good agreement is achieved. The results demonstrate that the maximum rectenna conversion efficiency is nearly 57% around 1.7 GHz and over 20% over the wideband of interest for the incident power density of 120 μW/cm2. It is noted that the impedance matching is one of the main factors affecting the rectenna energy conversion efficiency. This new wideband rectenna has great potential to harvest wireless energy in GSM/3G/4G and ISM 2.4 GHz bands.展开更多
Energy harvesting is a rapidly growing area in many scientific and engineering-related fields due to the demand for many applications. This paper focuses on the design and simulation of the voltage doubler rectifier c...Energy harvesting is a rapidly growing area in many scientific and engineering-related fields due to the demand for many applications. This paper focuses on the design and simulation of the voltage doubler rectifier circuit at 2.45 GHz operating frequency. The design of a rectifier is optimized based on the use of Schottky diode HSMS 286 B due to its low forward voltage at this frequency. 2 stages of the Schottky diode voltage doublers circuit are designed and simulated in this paper. The shunt capacitor and optimal load resistance are also introduced in the course to reduce signal loss. A multi-stage rectifier is used to produce maximum power conversion from AC to DC. The simulated results present that the maximum output voltage of 6.651 V with an input power of 25 dBm is produced, which presents a maximum power conversion efficiency of 73.13%, which applicable in small device applications.展开更多
This paper proposed the design of a dual-port rectifier with multifrequency operations.The RF rectifier is achieved using a combination of L-section inductive impedance matching network(IMN)at Port-1 with a multiple s...This paper proposed the design of a dual-port rectifier with multifrequency operations.The RF rectifier is achieved using a combination of L-section inductive impedance matching network(IMN)at Port-1 with a multiple stubs impedance transformer at Port-2.The fabricated prototype can harvest RF signal from GSM/900,GSM/1800,UMTS/2100,Wi-Fi/2.45 and LTE/2600 frequency bands at(0.94,1.80,2.10,2.46,and 2.63 GHz),respectively.The rectifier occupies a small portion of a PCB board at 0.20λg×0.15λg.The proposed circuit realized a measured peak RF-to-dc(radio frequency direct current)power conversion efficiency(PCE)of(21%,22.76%,25.33%,21.57%,and 22.14%)for an input power of−20 dBm.The RF harvester attains a measured peak RF-to-dc PCE of 72.70%and an output dc voltage of 154 mV for an input power of 3 dBm at 2.46 GHz.Measurement of the proposed rectifier in the ambiance gives a peak dc output voltage of 376.1 mV from the five signal tones.Similarly,a low-powered bq25504-674 evaluation module(EVM)is integrated with the rectifier.The module boost and drive the rectifier output dc voltage to 945 mV.The performance of the proposed rectifier in the ambiance environment makes it a suitable module for low-powered RF applications.展开更多
This paper presents a compact multi-band rectifier with an improved impedance matching bandwidth.It uses a combination of–matching network(MN)at Port-1,with a parallel connection of three cell branch MN at Port-2.The...This paper presents a compact multi-band rectifier with an improved impedance matching bandwidth.It uses a combination of–matching network(MN)at Port-1,with a parallel connection of three cell branch MN at Port-2.The proposed impedance matching network(IMN)is adopted to reduce circuit complexity,to improve circuit performance,and power conversion efficiency(PCE)of the rectifier at low input power.The fabricated rectifier prototype operates at 0.92,1.82,2.1,2.46 and 2.65 GHz covering GSM/900,GSM/1800,UMTS2100,and Wi-Fi/2.45–LTE2600.The size of the compact rectifier on the PCB board is 0.13λ_(g)×0.1λ_(g).The fabricated rectifier achieved an RF-to DC(radio frequency direct current)PCE of 31.8%,24%,22.7%,and 15%,and 14.1%for−20 dBm at the five respective measured operating frequencies.The circuit attains a peak RF-to-DC PCE of 82.3%for an input power of 3 dBm at 0.92 GHz.The proposed rectifier realizes an ambient output dc voltage of 454 mV for multi-tone input signals from the two ports.The rectifier drives a bq25504-674 power management module(PMM)to achieve 1.21 V from the two-port connection.The rectifier has the ability to exploit both frequency domain through the multi-band operation with good impedance bandwidth and a spatial domain using dual-port configuration.Hence,it is a potential candidate for various applications in radio frequency energy harvesting(RFEH)system.展开更多
Freely movable wave energy converters(WECs) will greatly improve their adaptability to the marine environment.In this paper, a dual-mode oscillating water column(OWC) WEC with potential sailing capability is proposed....Freely movable wave energy converters(WECs) will greatly improve their adaptability to the marine environment.In this paper, a dual-mode oscillating water column(OWC) WEC with potential sailing capability is proposed. By opening and closing a gate on the side facing the waves, the WEC converts wave energy in the vertical duct(called VD mode) with low sailing resistance or in the backward bend duct(called BBD mode) with high sailing resistance.A small model and a medium model were designed and manufactured. The capture width ratio(CWR) of the small model in the two modes was experimentally studied. The CWR under bidirectional airflow and conversion characteristics under unidirectional airflow of the medium model in the BBD mode were obtained. Tests of the small model show that the peak CWR is 145.2% under regular waves and 90.1% under random waves in BBD mode, and in VD mode the peak CWR is about 60% of that in the BBD mode. Tests of the medium model show that the peak CWR is 228.96% under regular waves, the maximum wave-to-battery efficiency is 63.36% under regular waves and 30.17%under random waves, respectively.展开更多
The design of multiband microstrip rectenna for radio frequency energy harvesting applications is presented in this paper. The designed antenna has good performance in the GSM-900/1800, WiFi and WLAN bands. In additio...The design of multiband microstrip rectenna for radio frequency energy harvesting applications is presented in this paper. The designed antenna has good performance in the GSM-900/1800, WiFi and WLAN bands. In addition, the rectifier circuit is designed at multi resonant frequencies to collect the largest amount of RF ambient power from different RF sources. The developed antenna is matched with the rectifier at four desired frequencies using several rectifier branches to collect the largest of RF power. The proposed rectenna is printed on FR4 substrate with modified ground plane to achieve suitable impedance bandwidth. The proposed antenna consists of elliptical radiating plane with stubs and stepped modified ground plane. The rectenna resonates at quad frequency bands at (GSM 900/1800, WiFi band and WLAN bands) with rectifier power conversion efficiency up to 56.4% at 0 dBm input power using the HSMS-2850 Schottky diode. The efficiency is more enhanced by using SMS-7630-061 Schottky diode which is characterized by a low junction capacitance and a low threshold voltage to achieve higher conversion efficiency up to 71.1% at the same 0 dBm input power for the same resonating frequency band.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51779104)the Natural Science Foundation of Fujian Province,China(Grant Nos.2016J01247 and 2016J01245)+1 种基金the New Century Talent Support Program of Fujian Province,China(Grant No.JA13170)the Foreign Cooperation Program of Fujian Province,China(Grant No.2016I010003)
文摘The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodies and the floating central platform capture multi-point wave energy simultaneously. The converter was simplified as a forced vibration system with three degrees of freedom, namely two heave motions and one rotational motion. The expressions of the amplitude-frequency response and the wave energy capture width were deduced from the motion equations of the converter. Based on the built mathematical model, the effects of the PTO damping coefficient, the PTO elastic coefficient, the connection length between the oscillating body and central platform, and the total number of oscillating bodies on the performance of the wave energy converter were investigated. Numerical results indicate that the dynamical properties and the energy conversion efficiency are related not only to the incident wave circle frequency but also to the converter’s physical parameters and interior PTO coefficients. By adjusting the connection length, higher wave energy absorption efficiencies can be obtained. More oscillating bodies installed result in more stable floating central platform and higher wave energy conversion efficiency.
基金funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.813393partially funded by the Portuguese FCT-Funda??o para a Ciência e a Tecnologia,under projects UIDB/50010/2020,UIDP/50010/2020 and PTDC/FIS-PLA/1616/2021。
文摘This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This tool is open to all users to carry out their own analyses,but also to contributors who wish to add their data to the database in order to improve the relevance of the comparisons made,and ultimately to improve the efficiency of CO_(2)conversion by plasma-catalysis.The creation of this database and database user interface is motivated by the fact that plasma-catalysis is a fast-growing field for all CO_(2)conversion processes,be it methanation,dry reforming of methane,methanolisation,or others.As a result of this rapid increase,there is a need for a set of standard procedures to rigorously compare performances of different systems.However,this is currently not possible because the fundamental mechanisms of plasma-catalysis are still too poorly understood to define these standard procedures.Fortunately however,the accumulated data within the CO_(2)plasma-catalysis community has become large enough to warrant so-called“big data”studies more familiar in the fields of medicine and the social sciences.To enable comparisons between multiple data sets and make future research more effective,this work proposes the first database on CO_(2)conversion performances by plasma-catalysis open to the whole community.This database has been initiated in the framework of a H_(2)0_(2)0 European project and is called the“PIONEER Data Base”.The database gathers a large amount of CO_(2)conversion performance data such as conversion rate,energy efficiency,and selectivity for numerous plasma sources coupled with or without a catalyst.Each data set is associated with metadata describing the gas mixture,the plasma source,the nature of the catalyst,and the form of coupling with the plasma.Beyond the database itself,a data extraction tool with direct visualisation features or advanced filtering functionalities has been developed and is available online to the public.The simple and fast visualisation of the state of the art puts new results into context,identifies literal gaps in data,and consequently points towards promising research routes.More advanced data extraction illustrates the impact that the database can have in the understanding of plasma-catalyst coupling.Lessons learned from the review of a large amount of literature during the setup of the database lead to best practice advice to increase comparability between future CO_(2)plasma-catalytic studies.Finally,the community is strongly encouraged to contribute to the database not only to increase the visibility of their data but also the relevance of the comparisons allowed by this tool.
文摘Ramp-up experiments by means of lower hybrid wave on HT-7 superconducting tokamak have been performed and analyzed. A ramp-up rate of over 300 kA/s is obtained and a conversion efficiency of over 1.0% has been achieved during the ramp-up phase. The study of the dependence of conversion efficiency on plasma density shows that the conversion efficiency is affected by the driven current, which is mainly dominated by the competition of impurity concentration with wave accessibility condition. In addition, the effect of current profile may play an important role in determining the conversion efficiency.
基金supported by the National Natural Science Foundation of China(Grants nos.11775155,51561135013,21603202)。
文摘Conversion of CO2 into CO using plasma processing powered by renewable energy is a promising method to convert intermittent sustainable electricity into storable chemical energy.Despite extensive research efforts worldwide,there is currently no process that achieves economically viable values for both CO2 conversion fraction and energy recovery efficiency simultaneously.Here we demonstrate that a process that utilizes the Boudouard reaction,CO^2++C→2 CO,driven by a thermal plasma allows both 95%CO2 conversion to CO and energy recovery efficiency of 70%,values far higher than seen so far.By comparing the conversion process with and without CO2 excitation by a plasma and by using optical emission spectroscopy we show that the improved performance is due to a novel mode of operation where CO2 is pyrolyzed into an active mixture of CO,O and O2 by an arc discharge which is then introduced into a fixed bed to interact with carbon material.In this way,the free oxygen in the mixture combusts with carbon to form CO,and residual plasma excited CO2 is reduced by carbon.In the overall process,the endothermic Boudouard reaction is partially replaced by an exothermic reaction,and the excess electric energy to produce CO2 plasma is reused in the carbon bed.
基金Project supported by the National Natural Science Foundation of China(Nos.11772162,11802147)the Natural Science Foundation of Inner Mongolia(No.2018LH01015)+1 种基金the Foundation of Inner Mongolia Autonomous Region University Scientific Research Project(No.NJZY18093)the Foundation of Inner Mongolia University of Technology(No.ZD201714)。
文摘In this work,the effects of externally applied axial pressure gradients and transverse magnetic fields on the electrokinetic energy conversion(EKEC)efficiency and the streaming potential of nanofluids through a microannulus are studied.The analytical solution for electro-magneto-hydro-dynamic(EMHD)flow is obtained under the condition of the Debye-Huuckel linearization.Especially,Green’s function method is used to obtain the analytical solutions of the velocity field.The result shows that the velocity distribution is characterized by the dimensionless frequency?,the Hartmann number Ha,the volume fraction of the nanoparticlesφ,the geometric radius ratio a,and the wallζpotential ratio b.Moreover,the effects of three kinds of periodic excitations are compared and discussed.The results also show that the periodic excitation of the square waveform is more effective in increasing the streaming potential and the EKEC efficiency.It is worth noting that adjusting the wallζpotential ratio and the geometric radius ratio can affect the streaming potential and the EKEC efficiency.
基金Project supported by the National Natural Science Foundation of China(Nos.11902165,11772162,and 11862018)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Nos.2019BS01004 and 2021MS01007)the Inner Mongolia Grassland Talent(No.12000-12102013)。
文摘Energy conversion in micro/nano-systems is a subject of current research,among which the electrokinetic energy conversion has attracted extensive attention.However,there exist two different definitions on the electrokinetic energy conversion efficiency in literature.A few researchers defined the efficiency using the pure pressure-driven flow rate,while other groups defined the efficiency based on the flow rate with the inclusion of the effect of the streaming potential field.In this work,both definitions are investigated for different fluid types under the periodic electrokinetic flow condition.For Newtonian fluids,the two definitions give similar results.However,for viscoelastic fluids,these two definitions lead to significant difference.The efficiency defined by the pure pressure-driven flow rate even exceeds 100%in a certain range of the parameters.The result shows that in the case of viscoelastic flow,it is incorrect to define the energy conversion efficiency by pure pressure-driven flow rate.At the same time,the reason for this problem is clarified through comprehensive analysis.
基金financial support offered by the National Key R&D Program of China(Grant No.2019YFA0705502,Grant No.2019YFA0705501)the National Natural Science Fund Project of China(Grant No.4210020395)+1 种基金the China Postdoctoral Science Foundation(Grant No.2021M700053)Technology Development Plan Project of Jilin Province(Grant No.20200201219JC).
文摘The autothermic pyrolysis in-situ conversion process (ATS) consumes latent heat of residual organic matter after kerogen pyrolysis by oxidation reaction, and it has the advantages of low development cost and exploitation of deep oil shale resources. However, the heating mechanism and the characteristic of different reaction zones are still unclear. In this study, an ATS numerical simulation model was proposed for the development of oil shale, which considers the pyrolysis of kerogen, high-temperature oxidation, and low-temperature oxidation. Based on the above model, the mechanism of the ATS was analyzed and the effects of preheating temperature, O_(2) content, and injection rate on recovery factor and energy efficiency were studied. The results showed that the ATS in the formation can be divided into five characteristic zones by evolution of the oil and O_(2) distribution, and the solid organic matter, including residue zone, autothermic zone, pyrolysis zone, preheating zone, and original zone. Energy efficiency was much higher for the ATS than for the high-temperature nitrogen injection in-situ conversion process (HNICP). There is a threshold value of the preheating temperature, the oil content, and the injection rate during the ATS, which is 400 °C, 0.18, and 1100 m3/day, respectively, in this study.
基金financially supported by the National Natural Science Foundation of China (Nos. 52071144, 52231009,51831009, 51901043)the Guangdong Basic and Applied Basic Research Foundation (No. 2023B1515040011)+1 种基金the Guangzhou Key Research and Development Program (No. 202103040001)the TCL Science and Technology Innovation Fund (No.20222055)。
文摘In the past two decades,a lot of high-capacity conversion-type metal oxides have been intensively studied as alternative anode materials for Li-ion batteries with higher energy density.Unfortunately,their large voltage hysteresis(0.8-1.2 V) within reversed conversion reactions results in huge round-trip inefficiencies and thus lower energy efficiency(50%-75%) in full cells than those with graphite anodes.This remains a long-term open question and has been the most serious drawback toward application of metal oxide anodes.Here we clarify the origins of voltage hysteresis in the typical SnO2anode and propose a universal strategy to minimize it.With the established in situ phosphating to generate metal phosphates during reversed conversion reactions in synergy with boosted reaction kinetics by the added P and Mo,the huge voltage hysteresis of 0.9 V in SnO_(2),SnO_(2)-Mo,and 0.6 V in SnO2-P anodes is minimized to 0.3 V in a ternary SnO_(2)-Mo-P(SOMP) composite,along with stable high capacity of 936 mA h g^(-1)after 800 cycles.The small voltage hysteresis can remain stable even the SOMP anode operated at high current rate of10 A g^(-1)and wide-range temperatures from 60 to 30℃,resulting in a high energy efficiency of88.5% in full cells.This effective strategy to minimize voltage hysteresis has also been demonstrated in Fe2O3,Co3O4-basded conversion-type anodes.This work provides important guidance to advance the high-capacity metal oxide anodes from laboratory to industrialization.
基金supported in part by National Natural Science Foundation of China (61372070)Natural Science Basic Research Plan in Shaanxi Province of China (2015JM6324)+2 种基金Ningbo Natural Science Foundation (2015A610117)Hong Kong, Macao and Taiwan Science & Technology Cooperation Program of China (2015DFT10160)the 111 Project (B08038)
文摘We study a radio frequency(RF) wireless energy transfer(WET) enabled multiple input multiple output(MIMO) system. A time slotted transmission pattern is considered. Each slot can be divided into two phases, downlink(DL) WET and uplink(UL) wireless information transmission(WIT). Since energy conversion efficiency of the energy harvesting circuits are non.linear, the conventional linear model leads to a mismatch for resource allocation. In this paper, the power allocation algorithm considering the practical non.linear energy harvesting circuits is studied. The optimization problem is formulated to maximize the energy efficiency of system with multiple constraints, i.e., the transmission power, the received power and the minimum harvested energy, which is a non.convex problem. We transform the objective function from fractional form into an equivalent objective function in subtractive form and provide an iterative power allocation algorithm to achieve the optimal solution. Numerical results show that our proposed algorithm with the non.linear RF energy conversion models can achieve much better performance than the algorithm with the conventional linear model.
基金financially supported by the National Natural Science Foundation of China(Project No.21875253,No.51903235)。
文摘Electrosynthesis has recently attracted intensive research attentions and holds great potential in implementing scalable green synthesis thanks to more and more readily accessible renewable electric energy.
文摘One of the most promising solar cell devices is cadmium telluride (CdTe) based. These cells however, have their own problems of stability and degradation in efficiency. Measurements show that CdS/CdTe solar cell has high series resistance which degrades the performance of solar cell energy conversion. Both active layers (CdS and CdTe) had been fabricated by thermal evaporation and tested individually. It was found that CdS window layer of 300 nm have the lowest series resistance with maximum light absorption. While 5 - 7 μm CdTe absorber layer absorbed more than 90% of the incident light with minimum series resistance. A complete CdS/CdTe solar cell was fabricated and tested. It was found that deposited cell without heat treatment shows that the short circuit current increment decreases as the light intensity increases. This type of deposited cell has low conversion efficiency. The energy conversion efficiency was improved by heat treatment, depositing heavily doped layer at the back of the cell and minimizing the contact resistivity by depositing material with resistivity less than 1 m??cm2. All these modifications were not enough because the back contact is non-ohmic. Tunnel diode of CdTe (p++)/CdS (n++) was deposited in the back of the cell. The energy conversion efficiency was improved by more than 7%.
基金National Natural Science Foundation of China (10972 102)Research Fund for the Doctoral Program of Higher Education of China (200802870007)Technology Research and Development Program of Jiangsu Province (BE2009163)
文摘With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer, an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoelectricity theory. It can be found that the energy conversion efficiency of the rainbow shape piezoelectric transducer mainly depends on its shape parameters and ma- terial properties from the analysis model. Simulation results show that there is an optimal length ratio to generate maximum en- ergy conversion efficiency and the optimal length ratios and energy conversion efficiencies of beryllium bronze substrate trans- ducer and steel substrate transducer are (0.65, 2.21%) and (0.65, 1.64%) respectively. The optimal thickness ratios and energy conversion efficieneies of beryllium bronze substrate transducer and steel substrate transducer are (1.16, 2.56%) and (1.49, 1.57%) respectively. With the increase of width ratio and initial curvature radius, both the energy conversion efficiencies de- crease. Moreover, beryllium bronze flexible substrate transducer is superior to the steel flexible substrate transducer.
基金financially supported by CNPq(Grant No.555695/2010-7)FAPERGS(Grant No.12/1418-4)CAPES(Grant No.2925/2011)
文摘The growing search for clean and renewable energy sources has given rise to the studies of exploring sea wave energy. This paper is concerned with the numerical evaluation of the main operational principle of a submerged plate employed for the conversion of wave energy into electrical one. The numerical model used to solve the conservation equations of mass, momentum and transport of volume fraction is based on the finite volume method (FVM). In order to tackle with the flow of mixture of air-water and its interaction with the device, the multiphase model volume of fluid (VOF) is employed. The purpose of this study is the evaluation of a numerical model for improvement of the knowledge about the submerged plate wave energy converter, as well as the investigation of the effect of the distance from the plate to the bottom of the sea (HP) on the performance of the converter. The simulations for several distances of the plate from the seabed show that the optimal efficiency is 64%, which is obtained for HP=0.53 m (88% of the depth). This efficiency is 17% larger than that found in the worst case (HP=0.46 m, 77% of the depth).
基金supported by the Special Fund for Marine Renewable Energy of the Ministry of Finance of China(No.GD2010ZC02)
文摘Based on two- and three-dimensional potential flow theories, the width effects on the hydrodynamics of a bottom-hinged trapezoidal pendulum wave energy converter are discussed. The two-dimensional eigenfunction expansion method is used to obtain the diffraction and radiation solutions when the converter width tends to be infinity. The trapezoidal section of the converter is approximated by a rectangular section for simplification. The nonlinear viscous damping effects are accounted for by including a drag term in the two- and three-dimensional methods. It is found that the three- dimensional results are in good agreement with the two-dimensional results when the converter width becomes larger, especially when the converter width is infinity, which shows that both of the methods are reasonable. Meantime, it is also found that the peak value of the conversion efficiency decreases as the converter width increases in short wave periods while increases when the converter width increases in long wave periods.
文摘This paper is focused on a wireless energy harvesting system using a rectifying antenna (rectenna). The proposed device consists of a wideband cross-dipole antenna, a microwave low-pass filter and a doubling rectifying circuit using Shottcky diodes as rectifying elements. Previously, a few of wideband rectennas have been investigated at 1.7 to 2.5 GHz. The originality of this paper is on the new wideband rectenna design which can harvest the ambient radio frequency (RF) power at 1.7 to 2.5 GHz. In this system, a new wideband cross dipole is designed and used to achieve the required bandwidth and duel-polarization. In addition, the voltage doubling rectifying circuit is optimized to achieve the best performance at power density levels 2 which are typical in urban environments. The characteristics of the proposed rectenna over the desired frequency range are investigated, and the integrated rectenna is simulated, made and tested for low input power densities from 5 to 200 μW/cm2. The simulation and measurement results of the rectenna are compared and a good agreement is achieved. The results demonstrate that the maximum rectenna conversion efficiency is nearly 57% around 1.7 GHz and over 20% over the wideband of interest for the incident power density of 120 μW/cm2. It is noted that the impedance matching is one of the main factors affecting the rectenna energy conversion efficiency. This new wideband rectenna has great potential to harvest wireless energy in GSM/3G/4G and ISM 2.4 GHz bands.
文摘Energy harvesting is a rapidly growing area in many scientific and engineering-related fields due to the demand for many applications. This paper focuses on the design and simulation of the voltage doubler rectifier circuit at 2.45 GHz operating frequency. The design of a rectifier is optimized based on the use of Schottky diode HSMS 286 B due to its low forward voltage at this frequency. 2 stages of the Schottky diode voltage doublers circuit are designed and simulated in this paper. The shunt capacitor and optimal load resistance are also introduced in the course to reduce signal loss. A multi-stage rectifier is used to produce maximum power conversion from AC to DC. The simulated results present that the maximum output voltage of 6.651 V with an input power of 25 dBm is produced, which presents a maximum power conversion efficiency of 73.13%, which applicable in small device applications.
基金This work was supported by TM R&D Malaysia under Project Number MMUE/190001.
文摘This paper proposed the design of a dual-port rectifier with multifrequency operations.The RF rectifier is achieved using a combination of L-section inductive impedance matching network(IMN)at Port-1 with a multiple stubs impedance transformer at Port-2.The fabricated prototype can harvest RF signal from GSM/900,GSM/1800,UMTS/2100,Wi-Fi/2.45 and LTE/2600 frequency bands at(0.94,1.80,2.10,2.46,and 2.63 GHz),respectively.The rectifier occupies a small portion of a PCB board at 0.20λg×0.15λg.The proposed circuit realized a measured peak RF-to-dc(radio frequency direct current)power conversion efficiency(PCE)of(21%,22.76%,25.33%,21.57%,and 22.14%)for an input power of−20 dBm.The RF harvester attains a measured peak RF-to-dc PCE of 72.70%and an output dc voltage of 154 mV for an input power of 3 dBm at 2.46 GHz.Measurement of the proposed rectifier in the ambiance gives a peak dc output voltage of 376.1 mV from the five signal tones.Similarly,a low-powered bq25504-674 evaluation module(EVM)is integrated with the rectifier.The module boost and drive the rectifier output dc voltage to 945 mV.The performance of the proposed rectifier in the ambiance environment makes it a suitable module for low-powered RF applications.
基金supported by TM R&D Malaysia under project number MMUE/190001.
文摘This paper presents a compact multi-band rectifier with an improved impedance matching bandwidth.It uses a combination of–matching network(MN)at Port-1,with a parallel connection of three cell branch MN at Port-2.The proposed impedance matching network(IMN)is adopted to reduce circuit complexity,to improve circuit performance,and power conversion efficiency(PCE)of the rectifier at low input power.The fabricated rectifier prototype operates at 0.92,1.82,2.1,2.46 and 2.65 GHz covering GSM/900,GSM/1800,UMTS2100,and Wi-Fi/2.45–LTE2600.The size of the compact rectifier on the PCB board is 0.13λ_(g)×0.1λ_(g).The fabricated rectifier achieved an RF-to DC(radio frequency direct current)PCE of 31.8%,24%,22.7%,and 15%,and 14.1%for−20 dBm at the five respective measured operating frequencies.The circuit attains a peak RF-to-DC PCE of 82.3%for an input power of 3 dBm at 0.92 GHz.The proposed rectifier realizes an ambient output dc voltage of 454 mV for multi-tone input signals from the two ports.The rectifier drives a bq25504-674 power management module(PMM)to achieve 1.21 V from the two-port connection.The rectifier has the ability to exploit both frequency domain through the multi-band operation with good impedance bandwidth and a spatial domain using dual-port configuration.Hence,it is a potential candidate for various applications in radio frequency energy harvesting(RFEH)system.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51879253 and U20A20106)。
文摘Freely movable wave energy converters(WECs) will greatly improve their adaptability to the marine environment.In this paper, a dual-mode oscillating water column(OWC) WEC with potential sailing capability is proposed. By opening and closing a gate on the side facing the waves, the WEC converts wave energy in the vertical duct(called VD mode) with low sailing resistance or in the backward bend duct(called BBD mode) with high sailing resistance.A small model and a medium model were designed and manufactured. The capture width ratio(CWR) of the small model in the two modes was experimentally studied. The CWR under bidirectional airflow and conversion characteristics under unidirectional airflow of the medium model in the BBD mode were obtained. Tests of the small model show that the peak CWR is 145.2% under regular waves and 90.1% under random waves in BBD mode, and in VD mode the peak CWR is about 60% of that in the BBD mode. Tests of the medium model show that the peak CWR is 228.96% under regular waves, the maximum wave-to-battery efficiency is 63.36% under regular waves and 30.17%under random waves, respectively.
文摘The design of multiband microstrip rectenna for radio frequency energy harvesting applications is presented in this paper. The designed antenna has good performance in the GSM-900/1800, WiFi and WLAN bands. In addition, the rectifier circuit is designed at multi resonant frequencies to collect the largest amount of RF ambient power from different RF sources. The developed antenna is matched with the rectifier at four desired frequencies using several rectifier branches to collect the largest of RF power. The proposed rectenna is printed on FR4 substrate with modified ground plane to achieve suitable impedance bandwidth. The proposed antenna consists of elliptical radiating plane with stubs and stepped modified ground plane. The rectenna resonates at quad frequency bands at (GSM 900/1800, WiFi band and WLAN bands) with rectifier power conversion efficiency up to 56.4% at 0 dBm input power using the HSMS-2850 Schottky diode. The efficiency is more enhanced by using SMS-7630-061 Schottky diode which is characterized by a low junction capacitance and a low threshold voltage to achieve higher conversion efficiency up to 71.1% at the same 0 dBm input power for the same resonating frequency band.