The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the la...The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the largest throughout the world.In addition,the integration and utilization of renewable energy in this grid is a great benchmark for other countries and can help promote energy transformation and achieve a high proportion of renewable energy consumption.Based on the analysis of the existing status of the European interconnected power grid and the development history of this power grid,this paper summarizes four key development stages of the European power grid.In addition,the characteristics of each stage and the development prospect of the European power grid are analyzed.On this basis,this paper gives suggestions for the development and construction of China’s energy internet;this can provide valuable reference for further studies on China’s energy internet.展开更多
The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy ...The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.展开更多
A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric veh...A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.展开更多
Energy and environmental problems are among the important factors restricting economic development. The development of green energy is an important measure to deal with energy and environmental problems, such as wind ...Energy and environmental problems are among the important factors restricting economic development. The development of green energy is an important measure to deal with energy and environmental problems, such as wind energy and photovoltaic. Energy Internet is an important mean to promote the transformation of the energy structure, improve energy efficiency and reduce pollution. In introduction, the energy Internet is put forward. Then the architecture and characteristics of energy Internet, such as integration, openness, intelligence and marketization of energy Internet are analyzed. Next, key technologies such as energy router, virtual power plant and network security technology are discussed. Finally, a few suggestions for the development of energy Internet are proposed, and hoped to promote the development of energy Internet.展开更多
Accurate calculation for comprehensive power load of fishery energy internet plays a significant role in reasonable using of energy and reducing environmental pollution.However,as fishery power load is of greatly uniq...Accurate calculation for comprehensive power load of fishery energy internet plays a significant role in reasonable using of energy and reducing environmental pollution.However,as fishery power load is of greatly unique meteorology sensitivity,it continues to be a difficult problem.Therefore,the research of fishery meteorology is an important part of the rational development of fishery resources,the protection of production safety,and the pursuit of high and stable yield.This paper makes a deep study on the power load of the fishery energy internet under the influence of fishery meteorology and takes onshore fish pond as the research object.First of all,the power load is divided into three parts:oxygen enrichment power load,feeding power load,and water replenishment and drainage power load.The impact mechanism of fishery meteorology(including temperature,surface wind speed,precipitation,relative humidity,etc.)on it is described,and then the overall power load is obtained through modeling and integration.Finally,taking the Yuguang Complementary Project in Zhouquan Town,Tongxiang,Zhejiang Province,China as an example,using the meteorological data of its typical spring day and using the MATLAB tool to solve,the hourly comparison of the three types of power loads,the comprehensive power load demand,the full-day electricity charge forecast and the total annual power consumption are calculated.The annual power consumption per hectare and per kilogram of output calculated by simulation are basically consistent with the order of magnitude of the survey data,which proves the validity of the model proposed.The model established in this paper is an original work,and the exploration of fishery energy internet can draw lessons from it.展开更多
What needs to be developed from the concept of"Smart Grid"is that:when renewable energy sources are absolutely prevailing in power generation,distributed power generation and distributed energy storage syste...What needs to be developed from the concept of"Smart Grid"is that:when renewable energy sources are absolutely prevailing in power generation,distributed power generation and distributed energy storage systems are widespread across the grid,and electric vehicle charging loads are prevailing in power load demands,how can the power grid support electric power as a core secondary energy source,undertake the role of a bridge between primary energy and end-use energy,and achieve the coordination and the optimization in macro energy perspective;how to guarantee the security of both macro energy and environment as well as the reliability of electricity.If a new term is needed,it should be Comprehensive Energy Network,not Energy Internet.展开更多
To utilize heat and electricity in a clean and integrated manner,a zero-carbon-emission micro Energy Internet(ZCE-MEI) architecture is proposed by incorporating non-supplementary fired compressed air energy storage(NS...To utilize heat and electricity in a clean and integrated manner,a zero-carbon-emission micro Energy Internet(ZCE-MEI) architecture is proposed by incorporating non-supplementary fired compressed air energy storage(NSF-CAES) hub.A typical ZCE-MEI combining power distribution network(PDN) and district heating network(DHN) with NSF-CAES is considered in this paper.NSF-CAES hub is formulated to take the thermal dynamic and pressure behavior into account to enhance dispatch flexibility.A modified Dist Flow model is utilized to allow several discrete and continuous reactive power compensators to maintain voltage quality of PDN.Optimal operation of the ZCE-MEI is firstly modeled as a mixed integer nonlinear programming(MINLP).Several transformations and simplifications are taken to convert the problem as a mixed integer linear programming(MILP)which can be effectively solved by CPLEX.A typical test system composed of a NSF-CAES hub,a 33-bus PDN,and an 8-node DHN is adopted to verify the effectiveness of the proposed ZCE-MEI in terms of reducing operation cost and wind curtailment.展开更多
With the intensifying energy crisis and environmental pollution, the Energy Internet and corresponding patterns of energy use have been attracting more and more attention. In this paper, the basic concept and characte...With the intensifying energy crisis and environmental pollution, the Energy Internet and corresponding patterns of energy use have been attracting more and more attention. In this paper, the basic concept and characteristics of the Energy Internet are summarized, and its basic structural framework is analyzed in detail. On this basis,couplings between the electric power system and other systems such as the cooling and heating system, the natural gas system, and the traffic system are analyzed, and the operation and planning of integrated energy systems in both deterministic and uncertain environments are comprehensively reviewed. Finally, the research prospects and main technical challenges of the Energy Internet are discussed.展开更多
Non-orthogonal multiple access is a promising technique to meet the harsh requirements for the internet of things devices in cognitive radio networks.To improve the energy efficiency(EE)of the unlicensed secondary use...Non-orthogonal multiple access is a promising technique to meet the harsh requirements for the internet of things devices in cognitive radio networks.To improve the energy efficiency(EE)of the unlicensed secondary users(SU),a power allocation(PA)algorithm with polynomial complexity is investigated.We first establish the feasible range of power consumption ratio using Karush-Kuhn-Tucker optimality conditions to support each SU’s minimum quality of service and the effectiveness of successive interference cancellation.Then,we formulate the EE optimization problem considering the total transmit power requirements which leads to a non-convex fractional programming problem.To efficiently solve the problem,we divide it into an inner-layer and outer-layer optimization sub-problems.The inner-layer optimization which is formulated to maximize the sub-carrier PA coefficients can be transformed into the difference of convex programming by using the first-order Taylor expansion.Based on the solution of the inner-layer optimization sub-problem,the concave-convex fractional programming problem of the outer-layer optimization sub-problem may be converted into the Lagrangian relaxation model employing the Dinkelbach algorithm.Simulation results demonstrate that the proposed algorithm has a faster convergence speed than the simulated annealing algorithm,while the average system EE loss is only less than 2%.展开更多
Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing an...Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.展开更多
Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data ...Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data and energy through radio frequency signals.State-of-the-art researches mostly focus on theoretical aspects.By contrast,we provide a complete design and implementation of a fully functioning DEIN system with the support of an unmanned aerial vehicle(UAV).The UAV can be dispatched to areas of interest to remotely recharge batteryless terminals,while collecting essential information from them.Then,the UAV uploads the information to remote base stations.Our system verifies the feasibility of the DEIN in practical applications.展开更多
Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative app...Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative applications using SWIPT,which is mainly based on wireless energy harvesting from electromagnetic waves used in communications.Wireless power transfer that uses magnetrons has been developed for communication technologies.Injection-locked magnetrons that can be used to facilitate high-power SWIPT for several devices are reviewed in this paper.This new technology is expected to pave the way for promoting the application of SWIPT in a wide range of fields.展开更多
基金funded by the State Grid Science and Technology Research Program:“Research on coordination development mode and reliability evaluation of source,network,load and storage considering the safety requirements(No.B3440818K005)”
文摘The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the largest throughout the world.In addition,the integration and utilization of renewable energy in this grid is a great benchmark for other countries and can help promote energy transformation and achieve a high proportion of renewable energy consumption.Based on the analysis of the existing status of the European interconnected power grid and the development history of this power grid,this paper summarizes four key development stages of the European power grid.In addition,the characteristics of each stage and the development prospect of the European power grid are analyzed.On this basis,this paper gives suggestions for the development and construction of China’s energy internet;this can provide valuable reference for further studies on China’s energy internet.
基金supported by the National Nature Science Foundation of China(Grant No.51821004)supported by National Soft Science Projects:"Frontier tracking research on science and technology in the field of energy" program
文摘The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.
基金sponsored by National Key Basic Research Program of China (973 Program) (2012CB215102) for WuUS National Science Foundation Award (1135872) for VaraiyaHong Kong RGC Theme-based Research Project (T23-701/14-N) for Hui
文摘A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.
文摘Energy and environmental problems are among the important factors restricting economic development. The development of green energy is an important measure to deal with energy and environmental problems, such as wind energy and photovoltaic. Energy Internet is an important mean to promote the transformation of the energy structure, improve energy efficiency and reduce pollution. In introduction, the energy Internet is put forward. Then the architecture and characteristics of energy Internet, such as integration, openness, intelligence and marketization of energy Internet are analyzed. Next, key technologies such as energy router, virtual power plant and network security technology are discussed. Finally, a few suggestions for the development of energy Internet are proposed, and hoped to promote the development of energy Internet.
基金supported by the National Natural Science Foundation of China under Grant 52007193 and The 2115 Talent Development Program of China Agricultural University.
文摘Accurate calculation for comprehensive power load of fishery energy internet plays a significant role in reasonable using of energy and reducing environmental pollution.However,as fishery power load is of greatly unique meteorology sensitivity,it continues to be a difficult problem.Therefore,the research of fishery meteorology is an important part of the rational development of fishery resources,the protection of production safety,and the pursuit of high and stable yield.This paper makes a deep study on the power load of the fishery energy internet under the influence of fishery meteorology and takes onshore fish pond as the research object.First of all,the power load is divided into three parts:oxygen enrichment power load,feeding power load,and water replenishment and drainage power load.The impact mechanism of fishery meteorology(including temperature,surface wind speed,precipitation,relative humidity,etc.)on it is described,and then the overall power load is obtained through modeling and integration.Finally,taking the Yuguang Complementary Project in Zhouquan Town,Tongxiang,Zhejiang Province,China as an example,using the meteorological data of its typical spring day and using the MATLAB tool to solve,the hourly comparison of the three types of power loads,the comprehensive power load demand,the full-day electricity charge forecast and the total annual power consumption are calculated.The annual power consumption per hectare and per kilogram of output calculated by simulation are basically consistent with the order of magnitude of the survey data,which proves the validity of the model proposed.The model established in this paper is an original work,and the exploration of fishery energy internet can draw lessons from it.
基金This work is supported by National High Technology Research and Development Program of China(863 Program)(No.2011AA05A105)and SGCC Projects.
文摘What needs to be developed from the concept of"Smart Grid"is that:when renewable energy sources are absolutely prevailing in power generation,distributed power generation and distributed energy storage systems are widespread across the grid,and electric vehicle charging loads are prevailing in power load demands,how can the power grid support electric power as a core secondary energy source,undertake the role of a bridge between primary energy and end-use energy,and achieve the coordination and the optimization in macro energy perspective;how to guarantee the security of both macro energy and environment as well as the reliability of electricity.If a new term is needed,it should be Comprehensive Energy Network,not Energy Internet.
基金supported in part by the National Natural Science Foundation of China(No.51321005,No.51377092,No.51577163)Opening Foundation of the Qinghai Province Key Laboratory of Photovoltaic Power Generation and Grid-connected Technology
文摘To utilize heat and electricity in a clean and integrated manner,a zero-carbon-emission micro Energy Internet(ZCE-MEI) architecture is proposed by incorporating non-supplementary fired compressed air energy storage(NSF-CAES) hub.A typical ZCE-MEI combining power distribution network(PDN) and district heating network(DHN) with NSF-CAES is considered in this paper.NSF-CAES hub is formulated to take the thermal dynamic and pressure behavior into account to enhance dispatch flexibility.A modified Dist Flow model is utilized to allow several discrete and continuous reactive power compensators to maintain voltage quality of PDN.Optimal operation of the ZCE-MEI is firstly modeled as a mixed integer nonlinear programming(MINLP).Several transformations and simplifications are taken to convert the problem as a mixed integer linear programming(MILP)which can be effectively solved by CPLEX.A typical test system composed of a NSF-CAES hub,a 33-bus PDN,and an 8-node DHN is adopted to verify the effectiveness of the proposed ZCE-MEI in terms of reducing operation cost and wind curtailment.
基金supported in part by the National Natural Science Foundation of China(No.51520105011)part by the Key S&T Special Project of Hunan Province of China(No.2015GK1002)part by the Science and Technology Project of Hunan Province of China(No.2015WK3002)
文摘With the intensifying energy crisis and environmental pollution, the Energy Internet and corresponding patterns of energy use have been attracting more and more attention. In this paper, the basic concept and characteristics of the Energy Internet are summarized, and its basic structural framework is analyzed in detail. On this basis,couplings between the electric power system and other systems such as the cooling and heating system, the natural gas system, and the traffic system are analyzed, and the operation and planning of integrated energy systems in both deterministic and uncertain environments are comprehensively reviewed. Finally, the research prospects and main technical challenges of the Energy Internet are discussed.
基金supported in part by the Science and Technology Research Program of the National Science Foundation of China(No.61671096)Chongqing Research Program of Basic Science and Frontier Technology(No.cstc2017jcyj BX0005)+1 种基金Chongqing Municipal Education Commission(No.KJQN201800642)Doctoral Student Training Program(No.BYJS2016009)。
文摘Non-orthogonal multiple access is a promising technique to meet the harsh requirements for the internet of things devices in cognitive radio networks.To improve the energy efficiency(EE)of the unlicensed secondary users(SU),a power allocation(PA)algorithm with polynomial complexity is investigated.We first establish the feasible range of power consumption ratio using Karush-Kuhn-Tucker optimality conditions to support each SU’s minimum quality of service and the effectiveness of successive interference cancellation.Then,we formulate the EE optimization problem considering the total transmit power requirements which leads to a non-convex fractional programming problem.To efficiently solve the problem,we divide it into an inner-layer and outer-layer optimization sub-problems.The inner-layer optimization which is formulated to maximize the sub-carrier PA coefficients can be transformed into the difference of convex programming by using the first-order Taylor expansion.Based on the solution of the inner-layer optimization sub-problem,the concave-convex fractional programming problem of the outer-layer optimization sub-problem may be converted into the Lagrangian relaxation model employing the Dinkelbach algorithm.Simulation results demonstrate that the proposed algorithm has a faster convergence speed than the simulated annealing algorithm,while the average system EE loss is only less than 2%.
基金supported by the National Key R&D Program of China(2020YFB1807801,2020YFB1807800)in part by Project Supported by Engineering Research Center of Mobile Communications,Ministry of Education(cqupt-mct-202003)+2 种基金in part by Key Lab of Information Network Security,Ministry of Public Security under Grant C19603in part by National Natural Science Foundation of China(Grant No.61901067 and 61901013)in part by Chongqing Municipal Natural Science Foundation(Grant No.cstc2020jcyj-msxmX0339).
文摘Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.
基金partly funded by Natural Science Foundation of China(No.61971102 and 62132004)Sichuan Science and Technology Program(No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2021D003)。
文摘Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data and energy through radio frequency signals.State-of-the-art researches mostly focus on theoretical aspects.By contrast,we provide a complete design and implementation of a fully functioning DEIN system with the support of an unmanned aerial vehicle(UAV).The UAV can be dispatched to areas of interest to remotely recharge batteryless terminals,while collecting essential information from them.Then,the UAV uploads the information to remote base stations.Our system verifies the feasibility of the DEIN in practical applications.
基金the collaborative research program from the Microwave Energy Transmission Laboratory(METLAB)Research Insti⁃tute for Sustainable Humanosphere(RISH)Kyoto University and National Institute of Information and Communications Technology(NICT),JAPAN under Grant No.02401.
文摘Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative applications using SWIPT,which is mainly based on wireless energy harvesting from electromagnetic waves used in communications.Wireless power transfer that uses magnetrons has been developed for communication technologies.Injection-locked magnetrons that can be used to facilitate high-power SWIPT for several devices are reviewed in this paper.This new technology is expected to pave the way for promoting the application of SWIPT in a wide range of fields.