期刊文献+
共找到8,671篇文章
< 1 2 250 >
每页显示 20 50 100
Smart Energy Management System Using Machine Learning
1
作者 Ali Sheraz Akram Sagheer Abbas +3 位作者 Muhammad Adnan Khan Atifa Athar Taher M.Ghazal Hussam Al Hamadi 《Computers, Materials & Continua》 SCIE EI 2024年第1期959-973,共15页
Energy management is an inspiring domain in developing of renewable energy sources.However,the growth of decentralized energy production is revealing an increased complexity for power grid managers,inferring more qual... Energy management is an inspiring domain in developing of renewable energy sources.However,the growth of decentralized energy production is revealing an increased complexity for power grid managers,inferring more quality and reliability to regulate electricity flows and less imbalance between electricity production and demand.The major objective of an energy management system is to achieve optimum energy procurement and utilization throughout the organization,minimize energy costs without affecting production,and minimize environmental effects.Modern energy management is an essential and complex subject because of the excessive consumption in residential buildings,which necessitates energy optimization and increased user comfort.To address the issue of energy management,many researchers have developed various frameworks;while the objective of each framework was to sustain a balance between user comfort and energy consumption,this problem hasn’t been fully solved because of how difficult it is to solve it.An inclusive and Intelligent Energy Management System(IEMS)aims to provide overall energy efficiency regarding increased power generation,increase flexibility,increase renewable generation systems,improve energy consumption,reduce carbon dioxide emissions,improve stability,and reduce energy costs.Machine Learning(ML)is an emerging approach that may be beneficial to predict energy efficiency in a better way with the assistance of the Internet of Energy(IoE)network.The IoE network is playing a vital role in the energy sector for collecting effective data and usage,resulting in smart resource management.In this research work,an IEMS is proposed for Smart Cities(SC)using the ML technique to better resolve the energy management problem.The proposed system minimized the energy consumption with its intelligent nature and provided better outcomes than the previous approaches in terms of 92.11% accuracy,and 7.89% miss-rate. 展开更多
关键词 Intelligent energy management system smart cities machine learning
下载PDF
Research on Smart Energy Monitoring and Management System Based on Digital Twin Technology
2
作者 Xuhui Wang 《Journal of Computer and Communications》 2024年第2期109-115,共7页
Smart energy monitoring and management system lays a foundation for the application and development of smart energy. However, in recent years, the work efficiency of smart energy development enterprises has generally ... Smart energy monitoring and management system lays a foundation for the application and development of smart energy. However, in recent years, the work efficiency of smart energy development enterprises has generally been low, and there is an urgent need to improve the application efficiency, resilience and sustainability of smart energy monitoring and management system. Digital twin technology provides a data-centric solution to improve smart energy monitoring and management system, bringing an opportunity to transform passive infrastructure assets into data-centric systems. This paper expounds on the concept and key technologies of digital twin, and designs a smart energy monitoring and management system based on digital twin technology, which has dual significance for promoting the development of smart energy field and promoting the application of digital twin. 展开更多
关键词 Digital Twin Smart energy Monitoring and management system
下载PDF
Survey on AI and Machine Learning Techniques for Microgrid Energy Management Systems 被引量:2
3
作者 Aditya Joshi Skieler Capezza +1 位作者 Ahmad Alhaji Mo-Yuen Chow 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第7期1513-1529,共17页
In the era of an energy revolution,grid decentralization has emerged as a viable solution to meet the increasing global energy demand by incorporating renewables at the distributed level.Microgrids are considered a dr... In the era of an energy revolution,grid decentralization has emerged as a viable solution to meet the increasing global energy demand by incorporating renewables at the distributed level.Microgrids are considered a driving component for accelerating grid decentralization.To optimally utilize the available resources and address potential challenges,there is a need to have an intelligent and reliable energy management system(EMS)for the microgrid.The artificial intelligence field has the potential to address the problems in EMS and can provide resilient,efficient,reliable,and scalable solutions.This paper presents an overview of existing conventional and AI-based techniques for energy management systems in microgrids.We analyze EMS methods for centralized,decentralized,and distributed microgrids separately.Then,we summarize machine learning techniques such as ANNs,federated learning,LSTMs,RNNs,and reinforcement learning for EMS objectives such as economic dispatch,optimal power flow,and scheduling.With the incorporation of AI,microgrids can achieve greater performance efficiency and more reliability for managing a large number of energy resources.However,challenges such as data privacy,security,scalability,explainability,etc.,need to be addressed.To conclude,the authors state the possible future research directions to explore AI-based EMS's potential in real-world applications. 展开更多
关键词 CONSENSUS energy management system(ems) reinforcement learning supervised learning
下载PDF
Autonomous Multi-Factor Energy Flows Controller (AmEFC): Enhancing Renewable Energy Management with Intelligent Control Systems Integration
4
作者 Dimitrios Vezeris Maria Polyzoi +2 位作者 Georgios Kotakis Pagona Kleitsiotou Eleni Tsotsopoulou 《Energy and Power Engineering》 2023年第11期399-442,共44页
The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs,... The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs, have emerged as a promising solution to integrate renewable energy sources, ensure energy security, and improve system resilience. The Autonomous multi-factor Energy Flow Controller (AmEFC) introduced in this paper addresses this need by offering a scalable, adaptable, and resilient framework for energy management within an on-grid micro-grid context. The urgency for such a system is predicated on the increasing volatility and unpredictability in energy landscapes, including fluctuating renewable outputs and changing load demands. To tackle these challenges, the AmEFC prototype incorporates a novel hierarchical control structure that leverages Renewable Energy Sources (RES), such as photovoltaic systems, wind turbines, and hydro pumps, alongside a sophisticated Battery Management System (BMS). Its prime objective is to maintain an uninterrupted power supply to critical loads, efficiently balance energy surplus through hydraulic storage, and ensure robust interaction with the main grid. A comprehensive Simulink model is developed to validate the functionality of the AmEFC, simulating real-world conditions and dynamic interactions among the components. The model assesses the system’s reliability in consistently powering critical loads and its efficacy in managing surplus energy. The inclusion of advanced predictive algorithms enables the AmEFC to anticipate energy production and consumption trends, integrating weather forecasting and inter-controller communication to optimize energy flow within and across micro-grids. This study’s significance lies in its potential to facilitate the seamless incorporation of RES into existing power systems, thus propelling the energy sector towards a more sustainable, autonomous, and resilient future. The results underscore the potential of such a system to revolutionize energy management practices and highlight the importance of smart controller systems in the era of smart grids. 展开更多
关键词 MICRO-GRID Smart Grid Interconnection Hybrid Renewable system energy Flow Controller Battery management Hydro Pump Off-Grid Solutions Ioniki Autonomous
下载PDF
Market Operation of Energy Storage System in Smart Grid:A Review
5
作者 Li Deng Jiafei Huan +7 位作者 Wei Wang Weitao Zhang Liangbin Xie Lun Dong Jingrong Guo Zhongping Li Yuan Huang Yue Xiang 《Energy Engineering》 EI 2024年第6期1403-1437,共35页
As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts... As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts with the fuzzy lack of market-oriented mechanisms for energy storage,the principle of market-oriented operation has not been embodied,and there is no unified and systematic analytical framework for the business model.However,the dispatch management model of energy storage in actual power system operation is not clear.Still,the specific scheduling process and energy storage strategy on the source-load-network side could be more specific,and there needs to be a greater understanding of the collaborative scheduling process of the multilevel scheduling center.On this basis,this paper reviews the energy storage operation model and market-based incentive mechanism,For different functional types and installation locations of energy storage within the power system,the operational models and existing policies for energy storage participation in the market that are adapted to multiple operating states are summarized.From the point of view of the actual scheduling and operation management of energy storage in China,an energy storage regulation and operation management model based on“national,provincial,and local”multilevel coordination is proposed,as well as key technologies in the interactive scenarios of source-load,network and storage. 展开更多
关键词 energy storage operation MARKETIZATION scheduling management national-branch-provincial local dispatch
下载PDF
Sustainable Development of Energy Systems and Climate Systems:Key Issues and Perspectives 被引量:1
6
作者 Bing Wang Lu Li Xinru Jiang 《Energy Engineering》 EI 2023年第8期1763-1773,共11页
Climate change and energy security issues are prominent challenges in current energy system management,which should be governed synergistically due to the feedback relationships between them.The“Energy Systems Manage... Climate change and energy security issues are prominent challenges in current energy system management,which should be governed synergistically due to the feedback relationships between them.The“Energy Systems Management and Climate Change”Special Collection Issue in the journal of Energy Engineering provide insights into the field of energy systems management and climate change.From an extended perspective,this study discusses the key issues,research methods and models for energy system management and climate change research.Comprehensive and accurate prediction of energy supply and demand,the evaluation on the energy system resilience to climate change and the coupling methodology application of both nature and social science field maybe the frontier topics around achieving sustainable development goals of energy systems. 展开更多
关键词 energy system management climate change renewable energy FEEDBACKS
下载PDF
A Predictive Energy Management Strategies for Mining Dump Trucks
7
作者 Yixuan Yu Yulin Wang +1 位作者 Qingcheng Li Bowen Jiao 《Energy Engineering》 EI 2024年第3期769-788,共20页
The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks c... The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks can achieve excellent fuel economy through efficient energy management strategies(EMS).Therefore,a series hybrid system is constructed based on a 100-ton mining dump truck in this paper.And inspired by the dynamic programming(DP)algorithm,a predictive equivalent consumption minimization strategy(P-ECMS)based on the DP optimization result is proposed.Based on the optimal control manifold and the SOC reference trajectory obtained by the DP algorithm,the P-ECMS strategy performs real-time stage parameter optimization to obtain the optimal equivalent factor(EF).Finally,applying the equivalent consumption minimization strategy(ECMS)realizes real-time control.The simulation results show that the equivalent fuel consumption of the P-ECMS strategy under the experimentally collected mining cycle conditions is 150.8 L/100 km,which is 10.9%less than that of the common CDCS strategy(169.3 L/100 km),and achieves 99.47%of the fuel saving effect of the DP strategy(150 L/100 km). 展开更多
关键词 Mining dump truck energy management strategy plug-in hybrid electric vehicle equivalent consumption minimization strategy dynamic programming
下载PDF
Energy Management of Networked Smart Railway Stations Considering Regenerative Braking, Energy Storage System, and Photovoltaic Units
8
作者 Saeed Akbari Seyed Saeed Fazel Hamed Hashemi-Dezaki 《Energy Engineering》 EI 2023年第1期69-86,共18页
The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manag... The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manage the energy exchanged between the networked microgrids to reduce received energy from the utility grid.Also,the operational costs of stations under various conditions decrease by applying the proposed method.The smart railway stations are studied in the presence of photovoltaic(PV)units,energy storage systems(ESSs),and regenerative braking strategies.Studying regenerative braking is one of the essential contributions.Moreover,the stochastic behaviors of the ESS’s initial state of energy and the uncertainty of PV power generation are taken into account through a scenario-based method.The networked microgrid scheme of railway stations(based on coordinated operation and scheduling)and independent operation of railway stations are studied.The proposed method is applied to realistic case studies,including three stations of Line 3 of Tehran Urban and Suburban Railway Operation Company(TUSROC).The rolling stock is simulated in the MATLAB environment.Thus,the coordinated operation of networked microgrids and independent operation of railway stations are optimized in the GAMS environment utilizing mixed-integer linear programming(MILP). 展开更多
关键词 energy management system(ems) smart railway stations coordinated operation photovoltaic generation regenerative braking uncertainty scenario-based model mixed-integer linear programming(MILP)
下载PDF
Energy Management and Capacity Optimization of Photovoltaic, Energy Storage System, Flexible Building Power System Considering Combined Benefit
9
作者 Chang Liu Bo Luo +5 位作者 Wei Wang Hongyuan Gao Zhixun Wang Hongfa Ding Mengqi Yu Yongquan Peng 《Energy Engineering》 EI 2023年第2期541-559,共19页
Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the... Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the building sector to control greenhouse gas emissions.Hence,to balance the interests of the environment and the building users,this paper proposes an optimal operation scheme for the photovoltaic,energy storage system,and flexible building power system(PEFB),considering the combined benefit of building.Based on the model of conventional photovoltaic(PV)and energy storage system(ESS),the mathematical optimization model of the system is proposed by taking the combined benefit of the building to the economy,society,and environment as the optimization objective,taking the near-zero energy consumption and carbon emission limitation of the building as the main constraints.The optimized operation strategy in this paper can give optimal results by making a trade-off between the users’costs and the combined benefits of the building.The efficiency and effectiveness of the proposed methods are verified by simulated experiments. 展开更多
关键词 PHOTOVOLTAIC energy storage system energy management PEFB optimization operation
下载PDF
Energy Management System with Power Offering Strategy for a Microgrid Integrated VPP
10
作者 Yeonwoo Lee 《Computers, Materials & Continua》 SCIE EI 2023年第4期2313-2329,共17页
In the context of both the Virtual Power Plant (VPP) and microgrid(MG), the Energy Management System (EMS) is a key decision-maker forintegrating Distributed renewable Energy Resources (DERs) efficiently. TheEMS is re... In the context of both the Virtual Power Plant (VPP) and microgrid(MG), the Energy Management System (EMS) is a key decision-maker forintegrating Distributed renewable Energy Resources (DERs) efficiently. TheEMS is regarded as a strong enabler of providing the optimized schedulingcontrol in operation and management of usage of disperse DERs and RenewableEnergy reSources (RES) such as a small-size wind-turbine (WT) andphotovoltaic (PV) energies. The main objective to be pursued by the EMSis the minimization of the overall operating cost of the MG integrated VPPnetwork. However, the minimization of the power peaks is a new objective andopen issue to a well-functional EMS, along with the maximization of profitin the energy market. Thus, both objectives have to be taken into accountat the same time. Thus, this paper proposes the EMS application incorporatingpower offering strategy applying a nature-inspired algorithm such asParticle Swarm Optimization (PSO) algorithm, in order to find the optimalsolution of the objective function in the context of the overall operating cost,the coordination of DERs, and the energy losses in a MG integrated VPPnetwork. For a fair DERs coordination with minimized power fluctuationsin the power flow, the power offering strategies with an active power controland re-distribution are proposed. Simulation results show that the proposedMG integrated VPP model with PSO-based EMS employing EgalitarianreDistribution (ED) power offering strategy is most feasible option for theoverall operating cost of VPP revenue. The total operating cost of the proposedEMS with ED strategy is 40.98$ compared to 432.8$ of MGs only withoutEMS. It is concluded that each MGs in the proposed VPP model intelligentlyparticipates in energy trading market compliant with the objective function,to minimize the overall cost and the power fluctuation. 展开更多
关键词 Artificial intelligence energy management system MICROGRID nature-inspired algorithm virtual power plant
下载PDF
Development of Energy Management System for Micro Grid Operation
11
作者 S.Jayaprakash B.Gopi +3 位作者 Murugananth Gopal Raj S.Sujith S.Deepa S.Swapna 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2537-2551,共15页
The introduction of several small and large-scale industries,malls,shopping complexes,and domestic applications has significantly increased energy consumption.The aim of the work is to simulate a technically viable an... The introduction of several small and large-scale industries,malls,shopping complexes,and domestic applications has significantly increased energy consumption.The aim of the work is to simulate a technically viable and economically optimum hybrid power system for residential buildings.The proposed micro-grid model includes four power generators:solar power,wind power,Electricity Board(EB)source,and a Diesel Generator(DG)set,with solar and wind power performing as major sources and the EB supply and DG set serving as backup sources.The core issue in direct current to alternate current conversion is harmonics distortion,a five-stage multilevel inverter is employed with the assistance of an intelligent control system is simulated and the optimum system configuration is estimated to reduce harmonics and improve the power quality.The monthly demand for residential buildings is 13-15 Megawatts.So,almost 433 Kilo-Watts(KW)of electricity is required every day,and if it is used for 8 h per day,50-60 KW of electricity is needed per hour.The overall micro-grid model’s operation and performance are established using MATLAB/SIMULINK software,and simulation results are provided.The simulation results show that the developed system is both cost-effective and environment friendly resulting in yearly cost reductions. 展开更多
关键词 MICROGRID energy management system intelligent control system multilevel inverter power plants
下载PDF
Low Carbon Building Design Optimization Based on Intelligent Energy Management System
12
作者 Zhenyi Feng NinaMo +2 位作者 ShujuanDai Yu Xiao Xia Cheng 《Energy Engineering》 EI 2023年第1期201-219,共19页
The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of ... The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings. 展开更多
关键词 Low carbon building design smart energy management system building structure evaluation carbon emission control energy saving control
下载PDF
Determination of Effectiveness of Energy Management System in Buildings
13
作者 Vivash Karki Roseline Mostafa +1 位作者 Bhaskaran Gopalakrishnan Derek R.Johnson 《Energy Engineering》 EI 2023年第2期561-586,共26页
Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effective... Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effectiveness of BEMS is dependent upon numerous factors,among which the operational characteristics of the building and the BEMS control parameters also play an essential role.This research develops a user-driven simulation tool where users can input the building parameters and BEMS controls to determine the effectiveness of their BEMS.The simulation tool gives the user the flexibility to understand the potential energy savings by employing specific BEMS control and help in making intelligent decisions.The simulation is developed using Visual Basic Application(VBA)in Microsoft Excel,based on discrete-event Monte Carlo Simulation(MCS).The simulation works by initially calculating the energy required for space cooling and heating based on current building parameters input by the user in the model.Further,during the second simulation,the user selects all the BEMS controls and improved building envelope to determine the energy required for space cooling and heating during that case.The model compares the energy consumption from the first simulation and the second simulation.Then the simulation model will provide the rating of the effectiveness of BEMS on a continuous scale of 1 to 5(1 being poor effectiveness and 5 being excellent effectiveness of BEMS).This work is intended to facilitate building owner/energy managers to analyze the building energy performance concerning the efficacy of their energy management system. 展开更多
关键词 BUILDINGS energy management system demand controlled ventilation supply air temperature reset temperature setback control monte carlo simulation
下载PDF
Sustainable Energy Management with Traffic Prediction Strategy for Autonomous Vehicle Systems
14
作者 Manar Ahmed Hamza Masoud Alajmi +3 位作者 Jaber SAlzahrani Siwar Ben Haj Hassine Abdelwahed Motwakel Ishfaq Yaseen 《Computers, Materials & Continua》 SCIE EI 2022年第8期3465-3479,共15页
Recent advancements of the intelligent transportation system(ITS)provide an effective way of improving the overall efficiency of the energy management strategy(EMSs)for autonomous vehicles(AVs).The use of AVs possesse... Recent advancements of the intelligent transportation system(ITS)provide an effective way of improving the overall efficiency of the energy management strategy(EMSs)for autonomous vehicles(AVs).The use of AVs possesses many advantages such as congestion control,accident prevention,and etc.However,energy management and traffic flow prediction(TFP)still remains a challenging problem in AVs.The complexity and uncertainties of driving situations adequately affect the outcome of the designed EMSs.In this view,this paper presents novel sustainable energy management with traffic flow prediction strategy(SEM-TPS)for AVs.The SEM-TPS technique applies type II fuzzy logic system(T2FLS)energy management scheme to accomplish the desired engine torque based on distinct parameters.In addition,the membership functions of the T2FLS scheme are chosen optimally using the barnacles mating optimizer(BMO).For accurate TFP,the bidirectional gated recurrent neural network(Bi-GRNN)model is used in AVs.A comprehensive experimental validation process is performed and the results are inspected with respect to several evaluation metrics.The experimental outcomes highlighted the supreme performance of the SEM-TPS technique over the recent state of art approaches. 展开更多
关键词 Sustainable energy TRANSPORTATION energy management traffic flow prediction soft computing deep learning
下载PDF
Energy Efficiency in Smart Grid: A Prospective Study on Energy Management Systems
15
作者 Hermes José Loschi Julio Leon +4 位作者 Yuzo Iano Ernesto Ruppert Filho Fabrizzio Daibert Conte Telmo Cardoso Lustosa Priscila Oliveira Freitas 《Smart Grid and Renewable Energy》 2015年第8期250-259,共10页
The term Smart Grid has become a term to represent the benefits of a smart and sophisticated electrical grid, which can meet various social expectations related to sustainability and energy efficiency. The Smart Grid ... The term Smart Grid has become a term to represent the benefits of a smart and sophisticated electrical grid, which can meet various social expectations related to sustainability and energy efficiency. The Smart Grid promises to enable a better power management for energy utilities and consumers, to provide the ability to integrate the power grid, to support the development of micro grids, and to involve citizens in energy management with higher levels of responsibility. However, this context comes with potential pitfalls, such as vulnerabilities to cyber-security and privacy risks. In this article, a prospective study about energy management, and exploring critical issues of modeling of energy management systems in a context Smart. Grid is presented along with background of energy management systems. An analysis of the demand response condition is also presented. Finally, the advantages and disadvantages of the implementation of energy management systems, and a comparison with the Brazilian electricity system are discussed. 展开更多
关键词 SMART GRID management CLOUD COMPUTING energy EFFICIENCY
下载PDF
Comparison of Energy Harvesting Systems for Wireless Sensor Networks 被引量:26
16
作者 James M.Gilbert Farooq Balouchi 《International Journal of Automation and computing》 EI 2008年第4期334-347,共14页
Wireless sensor networks (WSNs) offer an attractive solution to many environmental,security,and process monitoring problems.However,one barrier to their fuller adoption is the need to supply electrical power over exte... Wireless sensor networks (WSNs) offer an attractive solution to many environmental,security,and process monitoring problems.However,one barrier to their fuller adoption is the need to supply electrical power over extended periods of time without the need for dedicated wiring.Energy harvesting provides a potential solution to this problem in many applications.This paper reviews the characteristics and energy requirements of typical sensor network nodes,assesses a range of potential ambient energy sources,and outlines the characteristics of a wide range of energy conversion devices.It then proposes a method to compare these diverse sources and conversion mechanisms in terms of their normalised power density. 展开更多
关键词 energy harvesting energy scavenging wireless sensor networks (WSNs) energy management
下载PDF
Prospects of key technologies of integrated energy systems for rural electrification in China 被引量:11
17
作者 Jiaxi Li Dan Wang +3 位作者 Hongjie Jia Guohong Wu Wei He Huaqiang Xiong 《Global Energy Interconnection》 CAS CSCD 2021年第1期3-17,共15页
Owing to increasing environmental concerns and resource scarcity, integrated energy system shave become widely used in communities. Rural energy systems, as one of the important links of the energy network in China, s... Owing to increasing environmental concerns and resource scarcity, integrated energy system shave become widely used in communities. Rural energy systems, as one of the important links of the energy network in China, suffer from low energy efficiency and weak infrastructure. Therefore, it is particularly important to increase the proportion of electricity consumption and build an integrated energy system for rural electrification in China(IESREIC) with a rural distribution network as the core, in line with national conditions. In this study, by analyzing the Chinese regional differences and natural resource endowments, the development characteristics of the IESREIC are summarized. Then, according to the existing rural energy problems, key technologies are proposed for the IESREIC, such as those for planning and operation, value sharing, infrastructure, and a management and control platform. Finally, IESREIC demonstration projects and business models are introduced for agricultural production, rural industrial systems, and rural life. The purpose is to propose research concepts for the IESREIC, provide suggestions for the development of rural energy, and provide a reference for the construction of rural energy systems in countries with characteristics similar to those of China. 展开更多
关键词 Rural electrification Integrated energy system PLANNING energy value sharing energy management and control platform energy business model
下载PDF
Blockchain Energy: Blockchain in Future Energy Systems 被引量:4
18
作者 Bernd Teufel Anton Sentic Mathias Barmet 《Journal of Electronic Science and Technology》 CAS CSCD 2019年第4期317-331,共15页
The ongoing,in-depth transformation of the electricity sector towards increased use of alternative,renewable energy sources extends beyond a simple decentralisation drive in the electricity market.The transformation p... The ongoing,in-depth transformation of the electricity sector towards increased use of alternative,renewable energy sources extends beyond a simple decentralisation drive in the electricity market.The transformation process is characterised by the interplay of old and new technologies from the energy sector as well as structural coupling with other sectors,such as the information and communications technology(ICT),enabling the technology transfer as well as market entry by information technology(IT)actors.Blockchain-based technologies have the potential to play a key role in this transition by offering decentralised interfaces and systems as well as an alternative approach to the current organisation form of the energy market.This paper discusses the applicability and prospects for blockchain-based technologies in the energy sector,which are described using the term“blockchain energy”.For the purposes of this study,blockchain energy encompasses all socio-technical and organisational configurations in the energy sector based on the utilisation of the blockchain principle for energy trading,information storage,and/or increased transparency of energy flows and energy services.In the following chapters,the authors present and discuss the current transformation in the electricity market,followed by a review of the different utilisation possibilities for blockchain technologies in the energy sector and a discussion of the barriers and potential for blockchain energy using a transition studies perspective.Finally,the opportunities and risks of blockchain energy are discussed. 展开更多
关键词 Blockchain energy management crowd energy transition research.
下载PDF
Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems 被引量:9
19
作者 Tianmei Chen Yi Jin +5 位作者 Hanyu Lv Antao Yang Meiyi Liu Bing Chen Ying Xie Qiang Chen 《Transactions of Tianjin University》 EI CAS 2020年第3期208-217,共10页
In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-... In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems. 展开更多
关键词 LITHIUM-ION batteries Grid-level energy storage system Frequency regulation and peak SHAVING RENEWABLE energy integration Power management
下载PDF
Distributionally robust optimization based chance-constrained energy management for hybrid energy powered cellular networks
20
作者 Pengfei Du Hongjiang Lei +2 位作者 Imran Shafique Ansari Jianbo Du Xiaoli Chu 《Digital Communications and Networks》 SCIE CSCD 2023年第3期797-808,共12页
Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-m... Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-mittent,imposing formidable challenges on reliably satisfying users'time-varying wireless traffic demands.In addition,the probability distribution of the renewable energy or users’wireless traffic demand is not always fully known in practice.In this paper,we minimize the total energy cost of a hybrid-energy-powered cellular network by jointly optimizing the energy sharing among base stations,the battery charging and discharging rates,and the energy purchased from the grid under the constraint of a limited battery size at each base station.In solving the formulated non-convex chance-constrained stochastic optimization problem,a new ambiguity set is built to characterize the uncertainties in the renewable energy and wireless traffic demands according to interval sets of the mean and covariance.Using this ambiguity set,the original optimization problem is transformed into a more tractable second-order cone programming problem by exploiting the distributionally robust optimization approach.Furthermore,a low-complexity distributionally robust chance-constrained energy management algo-rithm,which requires only interval sets of the mean and covariance of stochastic parameters,is proposed.The results of extensive simulation are presented to demonstrate that the proposed algorithm outperforms existing methods in terms of the computational complexity,energy cost,and reliability. 展开更多
关键词 Cellular networks energy harvesting energy management Chance-constrained Distributionally robust optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部