期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hybrid Loader Automatic Shift Strategy Based on Neural Network
1
作者 潘鑫 闫伟 +1 位作者 陈玉鸿 李国祥 《Journal of Donghua University(English Edition)》 EI CAS 2016年第4期515-519,527,共6页
Hybrid loader 's comprehensive performance mainly depends on the performance of hydraulic torque converter during its driving and working. Hybrid loader and hydraulic torque converter are taken for the research ob... Hybrid loader 's comprehensive performance mainly depends on the performance of hydraulic torque converter during its driving and working. Hybrid loader and hydraulic torque converter are taken for the research objects. The primary characteristic curve of hydraulic torque converter and the traction curve of hybrid loader are acquired by analyzing the characteristic parameters of hydraulic torque converter, the characteristic parameters of engine, the characteristic parameters of battery pack and geometric parameters of hybrid loader. The gear shift curves based on the best energy saving performance and the best power performance are acquired respectively with the opening of throttle,the speed of pump wheel and the speed of turbine as parameters. Then the two curves are combined to get the comprehensive gear shift curve. Radical basis function( RBF) neural network is applied to building the gear shift strategy to keep hybrid loader with the best power performance and energy saving performance. The experimental bench is set up for experimental verification. It proves that both of the power performance and energy saving performance of hybrid loader are improved effectively by using the automatic shift strategy. 展开更多
关键词 hybrid loader automatic shift hydraulic torque converter radical basis function(RBF) neural network power performance energy saving performance
下载PDF
Feasibility Analysis of the Operation Strategies for Combined Cooling, Heating and Power Systems (CCHP) based on the Energy-Matching Regime 被引量:1
2
作者 FENG Lejun DAI Xiaoye +1 位作者 MO Junrong SHI Lin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第5期1149-1164,共16页
Although numerous studies have considered the two traditional operation strategies:following the electric load(FEL)and following the thermal load(FTL),for combined cooling,heating,and power(CCHP)systems in different c... Although numerous studies have considered the two traditional operation strategies:following the electric load(FEL)and following the thermal load(FTL),for combined cooling,heating,and power(CCHP)systems in different case studies,there are limited theoretical studies on the quantification methods to assess the feasibility of these two strategies in different load demands scenarios.Therefore,instead of a case study,we have undertaken a theoretical analysis of the suitable application scenarios for FEL and FTL strategies based on the energy-matching performance between systems'provision and users'demands.To compare the calculation models of energy saving rate(ESR)for FEL and FTL strategies in the left and right sub-regions of the energy-supply curve,a comprehensive parameter(^)that combines three inherently influential factors(off-design operation parameter,energy-matching parameter,and install capacity coefficient)is defined to determine the optimal installed capacity and feasibility of FEL or FTL strategies quantitatively.The results indicate that greater value of x contribute to a better energy saving performance,and FEL strategy shows better performance than FTL in most load demands scenarios,and the optimal installed capacity occurs when the load demand points were located in different regions of the energy-supply curve.Finally,taking a hotel in Beijing as an example,the value of the optimal install capacity coefficient is 0.845 and the FEL strategy is also suggested,and compared to the maximum install capacity,the average values of the ESR on a typical summer day,transition season,and winter can be enhanced by 3.9%,8.8%,and 1.89%,respectively. 展开更多
关键词 combined cooling heating and power systems(CCHP) energy-matching performance operation strategies comprehensive parameter energy saving performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部