A novel energy-regenerative active suspension(NEAS) system was designed to solve the problem of low energy recovery efficiency caused by frequent alternation of energy-recovery mode and active-control mode in a tradit...A novel energy-regenerative active suspension(NEAS) system was designed to solve the problem of low energy recovery efficiency caused by frequent alternation of energy-recovery mode and active-control mode in a traditional energyregenerative active suspension(TEAS) system. The energy recovery and active control could be implemented simultaneously in the NEAS. The transforming processes and the corresponding computational formulas of power conversion in the NEAS were provided. The simulation results show that the performances of energy recovery of the NEAS are improved, and the selfsustaining of power supply for the NEAS can be realized.展开更多
In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive s...In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffraction(XRD) were employed to investigate the microstructures and phase constitutions of the coatings. The experimental results show that all silicon deposition coatings have multi-layer structure. The microstructure and composition of silicide coatings strongly depend on siliconizing temperatures. In order to investigate the rate controlling step of pack siliconizing on Ti Al alloy, coating growth kinetics was analyzed by measuring the mass gains per unit area of silicided samples as a function of time and temperature. The results showed that the rate controlling step was gas-phase diffusion step and the growth rate constant(k) ranged from 1.53 mg^2/(cm^4·h^2) to 2.3 mg^2/(cm^4·h^2). Activation energy(Q) for the process was calculated as 109 k J/mol, determined by Arrhenius' equation: k = k0 exp[–Q/(RT)].展开更多
文摘A novel energy-regenerative active suspension(NEAS) system was designed to solve the problem of low energy recovery efficiency caused by frequent alternation of energy-recovery mode and active-control mode in a traditional energyregenerative active suspension(TEAS) system. The energy recovery and active control could be implemented simultaneously in the NEAS. The transforming processes and the corresponding computational formulas of power conversion in the NEAS were provided. The simulation results show that the performances of energy recovery of the NEAS are improved, and the selfsustaining of power supply for the NEAS can be realized.
基金Funded by the Natural Science Program for Basic Research in Key Areas of Shaanxi Province(2014JZ012)
文摘In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffraction(XRD) were employed to investigate the microstructures and phase constitutions of the coatings. The experimental results show that all silicon deposition coatings have multi-layer structure. The microstructure and composition of silicide coatings strongly depend on siliconizing temperatures. In order to investigate the rate controlling step of pack siliconizing on Ti Al alloy, coating growth kinetics was analyzed by measuring the mass gains per unit area of silicided samples as a function of time and temperature. The results showed that the rate controlling step was gas-phase diffusion step and the growth rate constant(k) ranged from 1.53 mg^2/(cm^4·h^2) to 2.3 mg^2/(cm^4·h^2). Activation energy(Q) for the process was calculated as 109 k J/mol, determined by Arrhenius' equation: k = k0 exp[–Q/(RT)].