In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the ...In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates.展开更多
In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-p...In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-periodic force,we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory.We also prove a uniqueness result via energy estimates.展开更多
The artificial bee colony (ABC) algorithm is a swarm-based metaheuristic optimization technique, developed by inspiring foraging and dance behaviors of honey bee colonies. ABC consists of four phases named as initiali...The artificial bee colony (ABC) algorithm is a swarm-based metaheuristic optimization technique, developed by inspiring foraging and dance behaviors of honey bee colonies. ABC consists of four phases named as initialization, employed bee, onlooker bee and scout bee. The employed bees try to improve their solution in employed bees phase. If an employed bee cannot improve self-solution in a certain time, it becomes a scout bee. This alteration is done in the scout bee phase. The onlooker bee phase is placed where information sharing is done. Although a candidate solution improved by onlookers is chosen among the employed bee population according to fitness values of the employed bees, neighbor of candidate solution is randomly selected. In this paper, we propose a selection mechanism for neighborhood of the candidate solutions in the onlooker bee phase. The proposed selection mechanism was based on information shared by the employed bees. Average fitness value obtained by the employed bees is calculated and those better than the aver- age fitness value are written to memory board. Therefore, the onlooker bees select a neighbor from the memory board. In this paper, the proposed ABC-based method called as iABC were applied to both five numerical benchmark functions and an estimation of energy demand problem. Obtained results for the problems show that iABC is better than the basic ABC in terms of solution quality.展开更多
The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied w...The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.展开更多
The following nonlinear hyperbolic equation is discussed in this paper:where A= -? + Iandx∈Rn. The model comes from the transverse deflection equation of an extensible beam. We prove that there exists a unique local ...The following nonlinear hyperbolic equation is discussed in this paper:where A= -? + Iandx∈Rn. The model comes from the transverse deflection equation of an extensible beam. We prove that there exists a unique local solution of the above equation as M depends on x.展开更多
The successful implementation of Renewable Energy Communities(RECs)involves maximizing the self-consumption within a community,particularly in regulatory contexts in which shared energy is incentivized.In many countri...The successful implementation of Renewable Energy Communities(RECs)involves maximizing the self-consumption within a community,particularly in regulatory contexts in which shared energy is incentivized.In many countries,the absence of a metering infrastructure that provides data at an hourly or sub-hourly resolution level for low-voltage users(e.g.,residential and commercial users)makes the design of a new energy community a challenging task.This study proposes a non-intrusive machine learning methodology that can be used to generate residential electrical consumption profiles at an hourly resolution level using only monthly consumption data(i.e.,billed energy),with the aim of estimating the energy shared by RECs.The proposed methodology involves three phases:first,identifying the typical load patterns of residential users through k-Means clustering,then implementing a Random Forest algorithm,based on monthly energy bills,to identify typical load patterns and,finally,reconstructing the hourly electrical load profile through a data-driven rescaling procedure.The effectiveness of the proposed methodology has been evaluated through an REC case study composed by 37 residential users powered by a 70 kWp photovoltaic plant.The Normalized Mean Absolute Error(NMAE)and the Normalized Root Mean Squared Error(NRMSE)were evaluated over an entire year and whenever the energy was shared within the REC.The Relative Absolute Error was also measured when estimating the shared energy at both a monthly(MRAE)and at an annual basis.(RAE).A comparison between the REC load profile reconstructed using the proposed methodology and the real load profile yielded an overall NMAE of 20.04%,an NRMSE of 26.17%,and errors of 18.34%and 23.87%during shared energy timeframes,respectively.Furthermore,our model delivered relative absolute errors for the estimation of the shared energy at a monthly and annual scale of 8.31%and 0.12%,respectively.展开更多
This paper is concerned with the existence of global solutions to the Cauchy problem of a hyperbolic-parabolic coupled system with large initial data. To this end, we first construct its local solutions by the standar...This paper is concerned with the existence of global solutions to the Cauchy problem of a hyperbolic-parabolic coupled system with large initial data. To this end, we first construct its local solutions by the standard iteration technique, then we deduce the basic energy estimate by constructing a convex entropy-entropy flux pair to this system. Moreover, the L∞-estimates and H^2-estimates of solutions are obtained through some delicate estimates. In our results, we do not ask the far fields of the initial data to be equal and the initial data can be arbitrarily large which generalize the result obtained in [7].展开更多
The present paper investigates the asymptotic behavior of solutions for a class of second order inhomogeneous quasilinear equations on a three dimensional semiinfinite cylinder. A Phragmen-Lindelof type alternative is...The present paper investigates the asymptotic behavior of solutions for a class of second order inhomogeneous quasilinear equations on a three dimensional semiinfinite cylinder. A Phragmen-Lindelof type alternative is obtained, i.e., it is shown that in appropriate norms solutions of the equations either grow or decay as some spatial variable tends to infinity.展开更多
In this paper, author considers a 3 x 3 system for a reacting flow model propesed by [9]. Since this model has source term, it can be considered as a relaxation approximation to 2 x 2 systems of conservation laws, whi...In this paper, author considers a 3 x 3 system for a reacting flow model propesed by [9]. Since this model has source term, it can be considered as a relaxation approximation to 2 x 2 systems of conservation laws, which include the well-known p-system. From this viewpoint, the author establishes the global existence and the nonlinear stability of travelling wave solutions by L-2 energy method.展开更多
This paper is concerned with a singular limit for the one-dimensional compress- ible radiation hydrodynamics model. The singular limit we consider corresponds to the physical problem of letting the Bouguer number infi...This paper is concerned with a singular limit for the one-dimensional compress- ible radiation hydrodynamics model. The singular limit we consider corresponds to the physical problem of letting the Bouguer number infinite while keeping the Boltzmann number constant. In the case when the corresponding Euler system admits a contact discontinuity wave, Wang and Xie (2011) [12] recently verified this singular limit and proved that the solution of the compressible radiation hydrodynamics model converges to the strong contact 1 discontinuity wave in the L∞-norm away from the discontinuity line at a rate of ε1/4, as the reciprocal of the Bouguer number tends to zero. In this paper, Wang and Xie's convergence rate is improved to ε7/8 by introducing a new a priori assumption and some refined energy estimates. Moreover, it is shown that the radiation flux q tends to zero in the L∞-norm away from the discontinuity line, at a convergence rate as the reciprocal of the Bouguer number tends to zero.展开更多
This paper is concerned with the existence and the nonlinear asymptotic stabil- ity of traveling wave solutions to the Cauchy problem for a system of dissipative evolution equations {θt=vζx+(ζθ)x+aθxx,ζt=-θ...This paper is concerned with the existence and the nonlinear asymptotic stabil- ity of traveling wave solutions to the Cauchy problem for a system of dissipative evolution equations {θt=vζx+(ζθ)x+aθxx,ζt=-θx+βζxx;with initial data and end states (ζθ)(x,0)=(ζ0,θ0)(x)→(ζ±,θ±)as x→∞.We obtain the existence of traveling wave solutions by phase plane analysis and show the asymptotic nonlinear stability of traveling wave solutions without restrictions on the coeffi- cients a and v by the method of energy estimates.展开更多
Globally exponential stability (which implies convergence and uniqueness) of their classical iterative algorithm is established using methods of heat equations and energy integral after embedding the discrete iterat...Globally exponential stability (which implies convergence and uniqueness) of their classical iterative algorithm is established using methods of heat equations and energy integral after embedding the discrete iteration into a continuous flow. The stability condition depends explicitly on smoothness of the image sequence, size of image domain, value of the regularization parameter, and finally discretization step. Specifically, as the discretization step approaches to zero, stability holds unconditionally. The analysis also clarifies relations among the iterative algorithm, the original variation formulation and the PDE system. The proper regularity of solution and natural images is briefly surveyed and discussed. Experimental results validate the theoretical claims both on convergence and exponential stability.展开更多
For the 2-D quasilinear wave equation (δt2-△x)u+2∑i,j=0gij(δu)δiju=0 satisfying null condition or both null conditions, a blowup or global existence result has been shown by Alinhac. In this paper, we consid...For the 2-D quasilinear wave equation (δt2-△x)u+2∑i,j=0gij(δu)δiju=0 satisfying null condition or both null conditions, a blowup or global existence result has been shown by Alinhac. In this paper, we consider a more general 2-D quasilinear wave equation (δt2-△x)u+2∑i,j=0gij(δu)δiju=0 satisfying null conditions with small initial data and the coefficients depending simultaneously on u and δu. Through construction of an approximate solution, combined with weighted energy integral method, a quasi-global or global existence solution are established by continuous induction.展开更多
This paper is concerned with the nonlinear stability of planar shock profiles to the Cauchy problem of the generalized KdV-Burgers equation in two dimensions. Our analysis is based on the energy method developed by Go...This paper is concerned with the nonlinear stability of planar shock profiles to the Cauchy problem of the generalized KdV-Burgers equation in two dimensions. Our analysis is based on the energy method developed by Goodman [5] for the nonlinear stability of scalar viscous shock profiles to scalar viscous conservation laws and some new decay estimates on the planar shock profiles of the generalized KdV-Burgers equation.展开更多
In this paper,we justify the convergence from the two-species Vlasov-PoissonBoltzmann(VPB,for short)system to the two-fluid incompressible Navier-Stokes-FourierPoisson(NSFP,for short)system with Ohm’s law in the cont...In this paper,we justify the convergence from the two-species Vlasov-PoissonBoltzmann(VPB,for short)system to the two-fluid incompressible Navier-Stokes-FourierPoisson(NSFP,for short)system with Ohm’s law in the context of classical solutions.We prove the uniform estimates with respect to the Knudsen numberεfor the solutions to the two-species VPB system near equilibrium by treating the strong interspecies interactions.Consequently,we prove the convergence to the two-fluid incompressible NSFP asεgoes to 0.展开更多
This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and elaborate energy method, the Cauchy problem in R^3. Under ...This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and elaborate energy method, the Cauchy problem in R^3. Under the assumption that the initial values are close to a equilibrium solutions, we prove that the smooth solutions of this problem converge to a steady state as the time goes to the infinity. It is shown that the difference of densities of two carriers converge to the equilibrium states with the norm ||·||H^s-1, while the velocities and the electromagnetic fields converge to the equilibrium states with weaker norms than ||·||H^s-1. This phenomenon on the charge transport shows the essential difference between the unipolar Navier-Stokes-Maxwell and the bipolar Navier-Stokes-Maxwell system.展开更多
We consider a non-isentropic Euler-Poisson system with two small parameters arising in the modeling of unmagnetized plasmas and semiconductors.On the basis of the energy estimates and the compactness theorem,the unifo...We consider a non-isentropic Euler-Poisson system with two small parameters arising in the modeling of unmagnetized plasmas and semiconductors.On the basis of the energy estimates and the compactness theorem,the uniform global existence of the solutions and the combined quasi-neutral and zero-electron-mass limit of the system are proved when the initial data are close to the constant equilibrium state.In particular,the limit is rigorously justified as the two parameters tend to zero independently.展开更多
In the paper, by using the methods of compensated compactness and energy estimate, the convergence of class of fourth and sixth orders singular perturbed, partial differential equations is obtained, and furthermore, t...In the paper, by using the methods of compensated compactness and energy estimate, the convergence of class of fourth and sixth orders singular perturbed, partial differential equations is obtained, and furthermore, the regularity of solutions are improved.展开更多
Alternating direction implicit (A.D.I.) schemes have been proved valuable in the approximation of the solutions of parabolic partial differential equations in multi-dimensional space. Consider equations in the form pa...Alternating direction implicit (A.D.I.) schemes have been proved valuable in the approximation of the solutions of parabolic partial differential equations in multi-dimensional space. Consider equations in the form partial derivative u/partial derivative t - partial derivative/partial derivative x(a(x,y,t) partial derivative u/partial derivative x) - partial derivative/partial derivative y(b(x,y,t) partial derivative u partial derivative y) = f Two A.D.I. schemes, Peaceman-Rachford scheme and Douglas scheme will be studied. In the literature, stability and convergence have been analysed with Fourier Method, which cannot be extended beyond the model problem with constant coefficients. Additionally, L-2 energy method has been introduced to analyse the case of non-constant coefficients, however, the conclusions are too weak and incomplete because of the so-called 'equivalence between L-2 norm and H-1 semi-norm'. In this paper, we try to improve these conclusions by H-1 energy estimating method. The principal results are that both of the two A.D.I. schemes are absolutely stable and converge to the exact solution with error estimations O(Delta t(2) + h(2)) in discrete H-1 norm. This implies essential improvement of existing conclusions.展开更多
文摘In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates.
基金partially supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100523,KJQN202000536)the National Natural Science Foundation of China(12001074)+3 种基金the Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0606)supported by the National Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0278)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202100503)the Research Project of Chongqing Education Commission(CXQT21014)。
文摘In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-periodic force,we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory.We also prove a uniqueness result via energy estimates.
基金“Scientific Research Projects of Selcuk University”for the institutional support
文摘The artificial bee colony (ABC) algorithm is a swarm-based metaheuristic optimization technique, developed by inspiring foraging and dance behaviors of honey bee colonies. ABC consists of four phases named as initialization, employed bee, onlooker bee and scout bee. The employed bees try to improve their solution in employed bees phase. If an employed bee cannot improve self-solution in a certain time, it becomes a scout bee. This alteration is done in the scout bee phase. The onlooker bee phase is placed where information sharing is done. Although a candidate solution improved by onlookers is chosen among the employed bee population according to fitness values of the employed bees, neighbor of candidate solution is randomly selected. In this paper, we propose a selection mechanism for neighborhood of the candidate solutions in the onlooker bee phase. The proposed selection mechanism was based on information shared by the employed bees. Average fitness value obtained by the employed bees is calculated and those better than the aver- age fitness value are written to memory board. Therefore, the onlooker bees select a neighbor from the memory board. In this paper, the proposed ABC-based method called as iABC were applied to both five numerical benchmark functions and an estimation of energy demand problem. Obtained results for the problems show that iABC is better than the basic ABC in terms of solution quality.
文摘The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.
文摘The following nonlinear hyperbolic equation is discussed in this paper:where A= -? + Iandx∈Rn. The model comes from the transverse deflection equation of an extensible beam. We prove that there exists a unique local solution of the above equation as M depends on x.
基金the project“Network 4 Energy Sustainable Transition-NEST”,Project code PE0000021Concession Decree No.1561 of 11.10.2022 adopted by Ministero dell’Universit`a e della Ricerca(MUR),CUP E13C22001890001+1 种基金funded under the National Recovery and Resilience Plan(NRRP),Mission 4 Component 2 Investment 1.3-Call for tender No.341 of 15.03.2022 of MURfunded by the European Union-NextGenerationEU.
文摘The successful implementation of Renewable Energy Communities(RECs)involves maximizing the self-consumption within a community,particularly in regulatory contexts in which shared energy is incentivized.In many countries,the absence of a metering infrastructure that provides data at an hourly or sub-hourly resolution level for low-voltage users(e.g.,residential and commercial users)makes the design of a new energy community a challenging task.This study proposes a non-intrusive machine learning methodology that can be used to generate residential electrical consumption profiles at an hourly resolution level using only monthly consumption data(i.e.,billed energy),with the aim of estimating the energy shared by RECs.The proposed methodology involves three phases:first,identifying the typical load patterns of residential users through k-Means clustering,then implementing a Random Forest algorithm,based on monthly energy bills,to identify typical load patterns and,finally,reconstructing the hourly electrical load profile through a data-driven rescaling procedure.The effectiveness of the proposed methodology has been evaluated through an REC case study composed by 37 residential users powered by a 70 kWp photovoltaic plant.The Normalized Mean Absolute Error(NMAE)and the Normalized Root Mean Squared Error(NRMSE)were evaluated over an entire year and whenever the energy was shared within the REC.The Relative Absolute Error was also measured when estimating the shared energy at both a monthly(MRAE)and at an annual basis.(RAE).A comparison between the REC load profile reconstructed using the proposed methodology and the real load profile yielded an overall NMAE of 20.04%,an NRMSE of 26.17%,and errors of 18.34%and 23.87%during shared energy timeframes,respectively.Furthermore,our model delivered relative absolute errors for the estimation of the shared energy at a monthly and annual scale of 8.31%and 0.12%,respectively.
基金Huijiang Zhao was supported by the National Natural Science Foundation of China (10871151)Changjiang Zhu was supported by the National Natural Science Foundation of China (10625105 and 10431060)the Program for New Century Excellent Talentsin University (NCET-04-0745)
文摘This paper is concerned with the existence of global solutions to the Cauchy problem of a hyperbolic-parabolic coupled system with large initial data. To this end, we first construct its local solutions by the standard iteration technique, then we deduce the basic energy estimate by constructing a convex entropy-entropy flux pair to this system. Moreover, the L∞-estimates and H^2-estimates of solutions are obtained through some delicate estimates. In our results, we do not ask the far fields of the initial data to be equal and the initial data can be arbitrarily large which generalize the result obtained in [7].
文摘The present paper investigates the asymptotic behavior of solutions for a class of second order inhomogeneous quasilinear equations on a three dimensional semiinfinite cylinder. A Phragmen-Lindelof type alternative is obtained, i.e., it is shown that in appropriate norms solutions of the equations either grow or decay as some spatial variable tends to infinity.
文摘In this paper, author considers a 3 x 3 system for a reacting flow model propesed by [9]. Since this model has source term, it can be considered as a relaxation approximation to 2 x 2 systems of conservation laws, which include the well-known p-system. From this viewpoint, the author establishes the global existence and the nonlinear stability of travelling wave solutions by L-2 energy method.
基金supported by the Doctoral Scientific Research Funds of Anhui University(J10113190005)the Tian Yuan Foundation of China(11426031)
文摘This paper is concerned with a singular limit for the one-dimensional compress- ible radiation hydrodynamics model. The singular limit we consider corresponds to the physical problem of letting the Bouguer number infinite while keeping the Boltzmann number constant. In the case when the corresponding Euler system admits a contact discontinuity wave, Wang and Xie (2011) [12] recently verified this singular limit and proved that the solution of the compressible radiation hydrodynamics model converges to the strong contact 1 discontinuity wave in the L∞-norm away from the discontinuity line at a rate of ε1/4, as the reciprocal of the Bouguer number tends to zero. In this paper, Wang and Xie's convergence rate is improved to ε7/8 by introducing a new a priori assumption and some refined energy estimates. Moreover, it is shown that the radiation flux q tends to zero in the L∞-norm away from the discontinuity line, at a convergence rate as the reciprocal of the Bouguer number tends to zero.
基金supported by the Natural Science Foundation of China(11001095)the Ph.D.specialized grant of the Ministry of Education of China(20100144110001)+2 种基金the Special Fund for Basic Scientific Research of Central Colleges(CCNU12C01001)supported by the Fundamental Research Funds for the Central Universities(2015IA009)the Natural Science Foundation of China(61573012)
文摘This paper is concerned with the existence and the nonlinear asymptotic stabil- ity of traveling wave solutions to the Cauchy problem for a system of dissipative evolution equations {θt=vζx+(ζθ)x+aθxx,ζt=-θx+βζxx;with initial data and end states (ζθ)(x,0)=(ζ0,θ0)(x)→(ζ±,θ±)as x→∞.We obtain the existence of traveling wave solutions by phase plane analysis and show the asymptotic nonlinear stability of traveling wave solutions without restrictions on the coeffi- cients a and v by the method of energy estimates.
基金Foundation item: Projects(60835005, 90820302) supported by the National Natural Science Foundation of China Project(2007CB311001) supported by the National Basic Research Program of China
文摘Globally exponential stability (which implies convergence and uniqueness) of their classical iterative algorithm is established using methods of heat equations and energy integral after embedding the discrete iteration into a continuous flow. The stability condition depends explicitly on smoothness of the image sequence, size of image domain, value of the regularization parameter, and finally discretization step. Specifically, as the discretization step approaches to zero, stability holds unconditionally. The analysis also clarifies relations among the iterative algorithm, the original variation formulation and the PDE system. The proper regularity of solution and natural images is briefly surveyed and discussed. Experimental results validate the theoretical claims both on convergence and exponential stability.
基金partially supported by the NSFC(11571177)the Priority Academic Program Development of Jiangsu Higher Education Institutionspartially funded by the DFG through the Sino-German Project "Analysis of PDEs and Applications"
文摘For the 2-D quasilinear wave equation (δt2-△x)u+2∑i,j=0gij(δu)δiju=0 satisfying null condition or both null conditions, a blowup or global existence result has been shown by Alinhac. In this paper, we consider a more general 2-D quasilinear wave equation (δt2-△x)u+2∑i,j=0gij(δu)δiju=0 satisfying null conditions with small initial data and the coefficients depending simultaneously on u and δu. Through construction of an approximate solution, combined with weighted energy integral method, a quasi-global or global existence solution are established by continuous induction.
文摘This paper is concerned with the nonlinear stability of planar shock profiles to the Cauchy problem of the generalized KdV-Burgers equation in two dimensions. Our analysis is based on the energy method developed by Goodman [5] for the nonlinear stability of scalar viscous shock profiles to scalar viscous conservation laws and some new decay estimates on the planar shock profiles of the generalized KdV-Burgers equation.
文摘In this paper,we justify the convergence from the two-species Vlasov-PoissonBoltzmann(VPB,for short)system to the two-fluid incompressible Navier-Stokes-FourierPoisson(NSFP,for short)system with Ohm’s law in the context of classical solutions.We prove the uniform estimates with respect to the Knudsen numberεfor the solutions to the two-species VPB system near equilibrium by treating the strong interspecies interactions.Consequently,we prove the convergence to the two-fluid incompressible NSFP asεgoes to 0.
基金supported by the Collaborative Innovation Center on Beijing Society-building and Social GovernanceNSFC(11371042)+2 种基金BNSF(1132006)the key fund of the Beijing education committee of ChinaChina Postdoctoral Science Foundation funded project
文摘This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and elaborate energy method, the Cauchy problem in R^3. Under the assumption that the initial values are close to a equilibrium solutions, we prove that the smooth solutions of this problem converge to a steady state as the time goes to the infinity. It is shown that the difference of densities of two carriers converge to the equilibrium states with the norm ||·||H^s-1, while the velocities and the electromagnetic fields converge to the equilibrium states with weaker norms than ||·||H^s-1. This phenomenon on the charge transport shows the essential difference between the unipolar Navier-Stokes-Maxwell and the bipolar Navier-Stokes-Maxwell system.
基金partially supported by the ISFNSFC joint research program(11761141008)NSFC(12071044 and 12131007)the NSF of Jiangsu Province(BK20191296)。
文摘We consider a non-isentropic Euler-Poisson system with two small parameters arising in the modeling of unmagnetized plasmas and semiconductors.On the basis of the energy estimates and the compactness theorem,the uniform global existence of the solutions and the combined quasi-neutral and zero-electron-mass limit of the system are proved when the initial data are close to the constant equilibrium state.In particular,the limit is rigorously justified as the two parameters tend to zero independently.
文摘In the paper, by using the methods of compensated compactness and energy estimate, the convergence of class of fourth and sixth orders singular perturbed, partial differential equations is obtained, and furthermore, the regularity of solutions are improved.
文摘Alternating direction implicit (A.D.I.) schemes have been proved valuable in the approximation of the solutions of parabolic partial differential equations in multi-dimensional space. Consider equations in the form partial derivative u/partial derivative t - partial derivative/partial derivative x(a(x,y,t) partial derivative u/partial derivative x) - partial derivative/partial derivative y(b(x,y,t) partial derivative u partial derivative y) = f Two A.D.I. schemes, Peaceman-Rachford scheme and Douglas scheme will be studied. In the literature, stability and convergence have been analysed with Fourier Method, which cannot be extended beyond the model problem with constant coefficients. Additionally, L-2 energy method has been introduced to analyse the case of non-constant coefficients, however, the conclusions are too weak and incomplete because of the so-called 'equivalence between L-2 norm and H-1 semi-norm'. In this paper, we try to improve these conclusions by H-1 energy estimating method. The principal results are that both of the two A.D.I. schemes are absolutely stable and converge to the exact solution with error estimations O(Delta t(2) + h(2)) in discrete H-1 norm. This implies essential improvement of existing conclusions.