期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation 被引量:12
1
作者 Jiren XUE Yewei ZHANG +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第1期1-14,共14页
The nonlinear behaviors and vibration reduction of a linear system with a nonlinear energy sink(NES)are investigated.The linear system is excited by a harmonic and random base excitation,consisting of a mass block,a l... The nonlinear behaviors and vibration reduction of a linear system with a nonlinear energy sink(NES)are investigated.The linear system is excited by a harmonic and random base excitation,consisting of a mass block,a linear spring,and a linear viscous damper.The NES is composed of a mass block,a linear viscous damper,and a spring with ideal cubic nonlinear stiffness.Based on the generalized harmonic function method,the steady-state Fokker-Planck-Kolmogorov equation is presented to reveal the response of the system.The path integral method based on the Gauss-Legendre polynomial is used to achieve the numerical solutions.The performance of vibration reduction is evaluated by the displacement and velocity transition probability densities,the transmissibility transition probability density,and the percentage of the energy absorption transition probability density of the linear oscillator.The sensitivity of the parameters is analyzed for varying the nonlinear stiffness coefficient and the damper ratio.The investigation illustrates that a linear system with NES can also realize great vibration reduction under harmonic and random base excitations and random bifurcation may appear under different parameters,which will affect the stability of the system. 展开更多
关键词 nonlinear energy sink(NES) Gauss-Legendre polynomial TRANSMISSIBILITY percentage of energy absorption
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部