Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink...Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.展开更多
The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while ...The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results.展开更多
The German Aerospace Center has merged a wide range of technological research and development for future cars in a project called "Next Generation Car". Within this large research project, three vehicle concepts for...The German Aerospace Center has merged a wide range of technological research and development for future cars in a project called "Next Generation Car". Within this large research project, three vehicle concepts for different applications (urban, regional and interurban) and with different powertrains (fuel-cell, battery and hybrid) will be developed. Research questions on different levels from conceptual question about vehicle modularity down to detailed technological aspects like combining hydrogen storage with cabin climatization and a systematic investigation of different thermal energy storage systems for electric vehicles concepts are covered by this project. To the latter, the contribution shows an overview about three thermal storage technologies--sensible solid media, metallic latent and thermochemical thermal energy storage systems--and details about the development of an electrically heated (power-to-heat) solid media storage system to achieve high storage densities and to allow flexible thermal discharging values. Central works target the identification of suitable thermal management solutions in future electric vehicle concepts to increase range, efficiency and flexibility.展开更多
In a power system, when extreme events occur, such as ice storm, large scale blackouts may be unavoidable. Such small probability but high risk events have huge impact on power systems. Most resilience research in pow...In a power system, when extreme events occur, such as ice storm, large scale blackouts may be unavoidable. Such small probability but high risk events have huge impact on power systems. Most resilience research in power systems only considers faults on the physical side, which would lead to overly idealistic results. This paper proposes a two-stage cyber-physical resilience enhancement method considering energy storage (ES) systems. The first stage calculates optimal planning of ES systems, and the second stage assesses resilience and enhancement of ES systems during the disaster. In the proposed model, cyber faults indirectly damage the system by disabling monitoring and control function of control center. As a result, when detection and response process of physical faults are blocked by cyber failures, serious load shedding occurs. Such a cyber-physical coupling mechanism of fault, response, restoration process is demonstrated in the modified IEEE Reliable Test System-79 (RTS-79). Simulation results show compared with the physical-only system, the cyber-physical system has a more accurate but degraded resilient performance. Besides, ES systems setting at proper place effectively enhance resilience of the cyber-physical transmission system with less load Shedding.展开更多
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
The increasing drive towards eco-friendly environment motivates the generation of energy from renewable energy sources (RESs). The rising share of RESs in power generation poses potential challenges, including uncerta...The increasing drive towards eco-friendly environment motivates the generation of energy from renewable energy sources (RESs). The rising share of RESs in power generation poses potential challenges, including uncertainties in generation output, frequency fluctuations, and insufficient voltage regulation capabilities. As a solution to these challenges, energy storage systems (ESSs) play a crucial role in storing and releasing power as needed. Battery energy storage systems (BESSs) provide significant potential to maximize the energy efficiency of a distribution network and the benefits of different stakeholders. This can be achieved through optimizing placement, sizing, charge/discharge scheduling, and control, all of which contribute to enhancing the overall performance of the network. In this paper, we provide a comprehensive overview of BESS operation, optimization, and modeling in different applications, and how mathematical and artificial intelligence (AI)-based optimization techniques contribute to BESS charging and discharging scheduling. We also discuss some potential future opportunities and challenges of the BESS operation, AI in BESSs, and how emerging technologies, such as internet of things, AI, and big data impact the development of BESSs.展开更多
Li-ion batteries have played a key role in the portable electronics and electrification of transport in modern society. Nevertheless,the limited highest energy density of Li-ion batteries is not sufficient for the lon...Li-ion batteries have played a key role in the portable electronics and electrification of transport in modern society. Nevertheless,the limited highest energy density of Li-ion batteries is not sufficient for the long-term needs of society. Since lithium is the lightest metal among all metallic elements and possesses the lowest redox potential of.3.04 V vs. standard hydrogen electrode, it delivers the highest theoretical specific capacity of 3860 mA h g^(-1) and a high working voltage of full batteries which causes a great interest in electrochemical energy storage systems. Lithium-sulfur, lithium-oxygen and corresponding all solid state batteries based on metal lithium anode have received widely attention owing to their high energy densities. However, the problems in the cathode,electrolyte and anode of these three systems restrict their practical application. In this review, the research status and problems of these three energy storage systems are summarized and the challenges and future perspectives are also outlined.展开更多
Microgrids(MGs)are playing a fundamental role in the transition of energy systems towards a low carbon future due to the advantages of a highly efficient network architecture for flexible integration of various DC/AC ...Microgrids(MGs)are playing a fundamental role in the transition of energy systems towards a low carbon future due to the advantages of a highly efficient network architecture for flexible integration of various DC/AC loads,distributed renewable energy sources,and energy storage systems,as well as a more resilient and economical on/off-grid control,operation,and energy management.However,MGs,as newcomers to the utility grid,are also facing challenges due to economic deregulation of energy systems,restructuring of generation,and marketbased operation.This paper comprehensively summarizes the published research works in the areas of MGs and related energy management modelling and solution techniques.First,MGs and energy storage systems are classified into multiple branches and typical combinations as the backbone of MG energy management.Second,energy management models under exogenous and endogenous uncertainties are summarized and extended to transactive energy management.Mathematical programming,adaptive dynamic programming,and deep reinforcement learning-based solution methods are investigated accordingly,together with their implementation schemes.Finally,problems for future energy management systems with dynamics-captured critical component models,stability constraints,resilience awareness,market operation,and emerging computational techniques are discussed.展开更多
Integrating a battery energy storage system(ESS)with a large wind farm can smooth the intermittent power obtained from the wind farm,but the smoothing function will not be achieved if multiple ESSs are used to smooth ...Integrating a battery energy storage system(ESS)with a large wind farm can smooth the intermittent power obtained from the wind farm,but the smoothing function will not be achieved if multiple ESSs are used to smooth the fluctuations in individual wind power plants in a distributed pattern.Therefore,this study focuses on the development of a control strategy to optimize the use of multiple ESSs to accelerate the adoption of wind energy resources.This paper proposes a quasi-automated generation control(QAGC)strategy to coordinate multiple ESSs,which responds to the grid dispatch demand rather than smoothing out the intermittent power from individual wind farms.The aims of QAGC are to ensure that multiple ESSs provide a service that is as balanced as possible,so more wind power systems at various scales can be accepted by the grid,as well maximizing the low-carbon benefits of ESSs.The effectiveness of QAGC is demonstrated by using data from an actual gigawatt scale cluster of wind plants.展开更多
The world is rapidly adopting renewable energy alternatives at a remarkable rate to address the ever-increasing environmental crisis of CO_(2) emissions.Renewable energy system offers enormous potential to decarbonize...The world is rapidly adopting renewable energy alternatives at a remarkable rate to address the ever-increasing environmental crisis of CO_(2) emissions.Renewable energy system offers enormous potential to decarbonize the environment because they produce no greenhouse gases or other polluting emissions.However,the RES relies on natural resources for energy generation,such as sunlight,wind,water,geothermal,which are generally un-predictable and reliant on weather,season,and year.To account for these intermittencies,renewable energy can be stored using various techniques and then used in a consistent and controlled manner as needed.Several researchers from around the world have made substantial contributions over the last century to developing novel methods of energy storage that are efficient enough to meet increasing energy demand and technological break-throughs.This review attempts to provide a critical review of the advancements in the energy storage system from 1850-2022,including its evolution,classification,operating principles and comparison.展开更多
The energy storage system(ESS) is becoming an important component in power systems to mitigate the adverse impact of intermittent renewable energy resources and improve power grid reliability and efficiency.However,st...The energy storage system(ESS) is becoming an important component in power systems to mitigate the adverse impact of intermittent renewable energy resources and improve power grid reliability and efficiency.However,storage devices driven by different technologies can have specific grid impacts.This special section is dedicated to reflecting the展开更多
Aqueous electrochemical energy storage(EES)devices are highly safe,environmentally benign,and inexpensive,but their operating voltage and energy density must be increased if they are to efficiently power multifunction...Aqueous electrochemical energy storage(EES)devices are highly safe,environmentally benign,and inexpensive,but their operating voltage and energy density must be increased if they are to efficiently power multifunctional electronics,new-energy cars as well as to be used in smart grids.This Minireview summarizes the key breakthroughs and progress in expanding the electrochemical stability window(ESW)of aqueous EES devices over the past five years.After briefly introducing the electrode engineering ways to widen ESW,we focus on four ground-breaking electrolyte engineering strategies and classify them into two kinds from the perspective of salts and exotic solutes/solvents.The widening degree toward ESW of these emerging electrolytes is compared and the universal fundamental mechanism relating to the interactions between limited water molecules and high-concentration salts(or large amounts of exotic solutes/solvents)is elucidated.Key challenges and perspectives for high-ESW electrolytes as well as recent advances in low-cost and other metal ion(sodium,potassium,zinc,etc.)-based electrolytes for expanding ESW are also outlined.展开更多
In l,ebanon, hybrid wind/PV systems are used to provide electricity when the public electricity is cut off This paper treats the storage problems of electrical energy generated by the used renewable sources. A theoret...In l,ebanon, hybrid wind/PV systems are used to provide electricity when the public electricity is cut off This paper treats the storage problems of electrical energy generated by the used renewable sources. A theoretical study on two types of electrical energy storage systems is given. These systems are the electrochemical energy storage devices (batteries) and the potential (or hydraulic) energy storage system. In order to find the limiting case of use between these two energy storage systems, economical study and comparison between them are discussed and analyzed.展开更多
This study has been undertaken to develop a consumer-oriented feasibility method for a hybrid photovoltaic(PV)-battery energy storage(BES)system by analyzing a real life house in Istanbul,Turkey,as a case study.The ho...This study has been undertaken to develop a consumer-oriented feasibility method for a hybrid photovoltaic(PV)-battery energy storage(BES)system by analyzing a real life house in Istanbul,Turkey,as a case study.The hourly electricity demand of the house was estimated by carrying out a detailed survey of the life style and daily habits of the household.No algorithm of any kind was used for the estimation of the energy demand with the exception of relating the lighting requirement to the daylight hours and the heating and cooling requirements to the seasonal weather changes.The developed method estimates the annual demand with an overall error of 8.68%.The net grid dependency and the feasibility of the PV-BES system was calculated for different combinations of PV and BES system sizes.It was found that when the maximum available roof area is used for PV installation and when the BES system size is increased,it is possible to achieve almost zero net grid dependency,and it is estimated that houses that are in regions with more abundant solar radiation and/or with lower annual electricity consumption,can reach zero net grid dependency.However,the feasibility indicator,which is the payback period,turned out to be no less than 25 years in any of the scenarios.The reasons for the infeasibility are the high prices of PV and BES systems as well as the current restriction in the regula-tions in Turkey,which prevents BES system owners from participating in unlicensed energy generation schemes and selling excess electricity back to the grid.In order to overcome this situation,regulations should be updated to allow BES system owners to benefit from feed-in-tariff schemes,thereby increasing the popularity of both PV and BES usage in Turkey.展开更多
Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters...Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.展开更多
Batteries,fuel cells,and supercapacitors are electrochemical devices already on the market and still need a boost in kinetics to match the high energy density demand of applications.Perovskites have attracted the scie...Batteries,fuel cells,and supercapacitors are electrochemical devices already on the market and still need a boost in kinetics to match the high energy density demand of applications.Perovskites have attracted the scientific community's attention in the last decade due to their electrocatalytic activity,chemical and structural properties,tunability,low cost,and scalability.Efforts have been made to understand the active sites and the operational mechanisms in perovskite oxides to shape them as an electrocatalyst in advanced energy devices.Understanding the role of perovskites is the key to engineering more controlled and efficient electrocatalysts via chemical synthesis,and there is still much to do.This review highlights the use of perovskites in different energy storage and conversion systems.The A,B,and A&B doping-site effects are analyzed to understand the opportunities and challenges related to this class of materials.In addition,the synthesis methods and the properties related to the doping site are described and summarized.展开更多
In this paper,we give a review of some most powerful pulsed systems developed at the Institute of High Current Electronics(HCEI),Siberian Branch,Russian Academy of Sciences,and describe latest achievements of the team...In this paper,we give a review of some most powerful pulsed systems developed at the Institute of High Current Electronics(HCEI),Siberian Branch,Russian Academy of Sciences,and describe latest achievements of the teams dealing with these installations.Besides the presented high-power systems,HCEI performs numerous investigations using much less powerful generators.For instance,last year much attention was paying to the research and development of the intense low-energy(<200 kV)high-current electron and ion beam and plasma sources,and their application in the technology[1-3].展开更多
Addressing climate change demands a significant shift away from fossil fuels,with sectors like electricity and transportation relying heavily on renewable energy.Integral to this transition are energy storage systems,...Addressing climate change demands a significant shift away from fossil fuels,with sectors like electricity and transportation relying heavily on renewable energy.Integral to this transition are energy storage systems,notably lithium-ion batteries.Over time,these batteries degrade,affecting their efficiency and posing safety risks.Monitoring and predicting battery aging is essential,especially estimating its state of health(SOH).Various SOH estimation methods exist,from traditional model-based approaches to machine learning approaches.展开更多
In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to...In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to evaluate the corrosion performance and select a suitable candidate material for use as a molten salt manometer diaphragm in thermal energy storage systems.The results indicated that the alloys(316H SS and GH3535)exhibited less corrosion than pure metals(Ni and Ti)in liquid GaInSn.Ga-rich binary intermetallic compounds were found to form on the surfaces of all the tested metal materials exposed to liquid GaInSn,as a result of the decomposition of liquid GaInSn and its reaction with the constituent elements of the metal materials.The corrosion mechanism for all the tested materials exposed to liquid GaInSn was also investigated and proposed,which may aid in selecting the optimal candidate material when liquid GaInSn is used as the pressure-sensing medium.展开更多
Battery energy storage system(BESS)is one of the effective technologies to deal with power fluctuation and intermittence resulting from grid integration of large renewable generations.In this paper,the system configur...Battery energy storage system(BESS)is one of the effective technologies to deal with power fluctuation and intermittence resulting from grid integration of large renewable generations.In this paper,the system configuration of a China’s national renewable generation demonstration project combining a large-scale BESS with wind farm and photovoltaic(PV)power station,all coupled to a power transmission system,is introduced,and the key technologies including optimal control and management as well as operational status of this BESS are presented.Additionally,the technical benefits of such a large-scale BESS in dealing with power fluctuation and intermittence issues resulting from grid connection of large-scale renewable generation,and for improvement of operation characteristics of transmission grid,are discussed with relevant case studies.展开更多
文摘Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.
基金relates to Department of Navy award(N00014-20-1-2858)。
文摘The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results.
文摘The German Aerospace Center has merged a wide range of technological research and development for future cars in a project called "Next Generation Car". Within this large research project, three vehicle concepts for different applications (urban, regional and interurban) and with different powertrains (fuel-cell, battery and hybrid) will be developed. Research questions on different levels from conceptual question about vehicle modularity down to detailed technological aspects like combining hydrogen storage with cabin climatization and a systematic investigation of different thermal energy storage systems for electric vehicles concepts are covered by this project. To the latter, the contribution shows an overview about three thermal storage technologies--sensible solid media, metallic latent and thermochemical thermal energy storage systems--and details about the development of an electrically heated (power-to-heat) solid media storage system to achieve high storage densities and to allow flexible thermal discharging values. Central works target the identification of suitable thermal management solutions in future electric vehicle concepts to increase range, efficiency and flexibility.
基金supported by the Project funded by China Postdoctoral Science Foundation(Grant No.2022M710906).
文摘In a power system, when extreme events occur, such as ice storm, large scale blackouts may be unavoidable. Such small probability but high risk events have huge impact on power systems. Most resilience research in power systems only considers faults on the physical side, which would lead to overly idealistic results. This paper proposes a two-stage cyber-physical resilience enhancement method considering energy storage (ES) systems. The first stage calculates optimal planning of ES systems, and the second stage assesses resilience and enhancement of ES systems during the disaster. In the proposed model, cyber faults indirectly damage the system by disabling monitoring and control function of control center. As a result, when detection and response process of physical faults are blocked by cyber failures, serious load shedding occurs. Such a cyber-physical coupling mechanism of fault, response, restoration process is demonstrated in the modified IEEE Reliable Test System-79 (RTS-79). Simulation results show compared with the physical-only system, the cyber-physical system has a more accurate but degraded resilient performance. Besides, ES systems setting at proper place effectively enhance resilience of the cyber-physical transmission system with less load Shedding.
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
基金supported by the Australian Government Department of Industry,Science,Energy,and Resources,and the Department of Climate Change,Energy,the Environment and Water under the International Clean Innovation Researcher Networks(ICIRN)program(grant number:ICIRN000077).
文摘The increasing drive towards eco-friendly environment motivates the generation of energy from renewable energy sources (RESs). The rising share of RESs in power generation poses potential challenges, including uncertainties in generation output, frequency fluctuations, and insufficient voltage regulation capabilities. As a solution to these challenges, energy storage systems (ESSs) play a crucial role in storing and releasing power as needed. Battery energy storage systems (BESSs) provide significant potential to maximize the energy efficiency of a distribution network and the benefits of different stakeholders. This can be achieved through optimizing placement, sizing, charge/discharge scheduling, and control, all of which contribute to enhancing the overall performance of the network. In this paper, we provide a comprehensive overview of BESS operation, optimization, and modeling in different applications, and how mathematical and artificial intelligence (AI)-based optimization techniques contribute to BESS charging and discharging scheduling. We also discuss some potential future opportunities and challenges of the BESS operation, AI in BESSs, and how emerging technologies, such as internet of things, AI, and big data impact the development of BESSs.
基金supported by the National Basic Research Program of China(2014CB932301)the National Natural Science Foundation of China(21473040)Science&Technology Commission of Shanghai Municipality(08DZ2270500)
文摘Li-ion batteries have played a key role in the portable electronics and electrification of transport in modern society. Nevertheless,the limited highest energy density of Li-ion batteries is not sufficient for the long-term needs of society. Since lithium is the lightest metal among all metallic elements and possesses the lowest redox potential of.3.04 V vs. standard hydrogen electrode, it delivers the highest theoretical specific capacity of 3860 mA h g^(-1) and a high working voltage of full batteries which causes a great interest in electrochemical energy storage systems. Lithium-sulfur, lithium-oxygen and corresponding all solid state batteries based on metal lithium anode have received widely attention owing to their high energy densities. However, the problems in the cathode,electrolyte and anode of these three systems restrict their practical application. In this review, the research status and problems of these three energy storage systems are summarized and the challenges and future perspectives are also outlined.
基金supported in part by the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant LAPS21002in part by the National Natural Science Foundation of China under Grant 52061635102in part by Guangdong Basic and Applied Basic Research Foundation under Grant 2021A1515110583.
文摘Microgrids(MGs)are playing a fundamental role in the transition of energy systems towards a low carbon future due to the advantages of a highly efficient network architecture for flexible integration of various DC/AC loads,distributed renewable energy sources,and energy storage systems,as well as a more resilient and economical on/off-grid control,operation,and energy management.However,MGs,as newcomers to the utility grid,are also facing challenges due to economic deregulation of energy systems,restructuring of generation,and marketbased operation.This paper comprehensively summarizes the published research works in the areas of MGs and related energy management modelling and solution techniques.First,MGs and energy storage systems are classified into multiple branches and typical combinations as the backbone of MG energy management.Second,energy management models under exogenous and endogenous uncertainties are summarized and extended to transactive energy management.Mathematical programming,adaptive dynamic programming,and deep reinforcement learning-based solution methods are investigated accordingly,together with their implementation schemes.Finally,problems for future energy management systems with dynamics-captured critical component models,stability constraints,resilience awareness,market operation,and emerging computational techniques are discussed.
基金This work is supported by National Basic Research Program of China(973 Program)(No.2013CB228201).
文摘Integrating a battery energy storage system(ESS)with a large wind farm can smooth the intermittent power obtained from the wind farm,but the smoothing function will not be achieved if multiple ESSs are used to smooth the fluctuations in individual wind power plants in a distributed pattern.Therefore,this study focuses on the development of a control strategy to optimize the use of multiple ESSs to accelerate the adoption of wind energy resources.This paper proposes a quasi-automated generation control(QAGC)strategy to coordinate multiple ESSs,which responds to the grid dispatch demand rather than smoothing out the intermittent power from individual wind farms.The aims of QAGC are to ensure that multiple ESSs provide a service that is as balanced as possible,so more wind power systems at various scales can be accepted by the grid,as well maximizing the low-carbon benefits of ESSs.The effectiveness of QAGC is demonstrated by using data from an actual gigawatt scale cluster of wind plants.
文摘The world is rapidly adopting renewable energy alternatives at a remarkable rate to address the ever-increasing environmental crisis of CO_(2) emissions.Renewable energy system offers enormous potential to decarbonize the environment because they produce no greenhouse gases or other polluting emissions.However,the RES relies on natural resources for energy generation,such as sunlight,wind,water,geothermal,which are generally un-predictable and reliant on weather,season,and year.To account for these intermittencies,renewable energy can be stored using various techniques and then used in a consistent and controlled manner as needed.Several researchers from around the world have made substantial contributions over the last century to developing novel methods of energy storage that are efficient enough to meet increasing energy demand and technological break-throughs.This review attempts to provide a critical review of the advancements in the energy storage system from 1850-2022,including its evolution,classification,operating principles and comparison.
文摘The energy storage system(ESS) is becoming an important component in power systems to mitigate the adverse impact of intermittent renewable energy resources and improve power grid reliability and efficiency.However,storage devices driven by different technologies can have specific grid impacts.This special section is dedicated to reflecting the
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.51972257,51872104 and 51672205)the National Key R&D Program of China(Grant No.2016YFA0202602)the Natural Science Foundation of Hubei Province(2018CFB581)
文摘Aqueous electrochemical energy storage(EES)devices are highly safe,environmentally benign,and inexpensive,but their operating voltage and energy density must be increased if they are to efficiently power multifunctional electronics,new-energy cars as well as to be used in smart grids.This Minireview summarizes the key breakthroughs and progress in expanding the electrochemical stability window(ESW)of aqueous EES devices over the past five years.After briefly introducing the electrode engineering ways to widen ESW,we focus on four ground-breaking electrolyte engineering strategies and classify them into two kinds from the perspective of salts and exotic solutes/solvents.The widening degree toward ESW of these emerging electrolytes is compared and the universal fundamental mechanism relating to the interactions between limited water molecules and high-concentration salts(or large amounts of exotic solutes/solvents)is elucidated.Key challenges and perspectives for high-ESW electrolytes as well as recent advances in low-cost and other metal ion(sodium,potassium,zinc,etc.)-based electrolytes for expanding ESW are also outlined.
文摘In l,ebanon, hybrid wind/PV systems are used to provide electricity when the public electricity is cut off This paper treats the storage problems of electrical energy generated by the used renewable sources. A theoretical study on two types of electrical energy storage systems is given. These systems are the electrochemical energy storage devices (batteries) and the potential (or hydraulic) energy storage system. In order to find the limiting case of use between these two energy storage systems, economical study and comparison between them are discussed and analyzed.
文摘This study has been undertaken to develop a consumer-oriented feasibility method for a hybrid photovoltaic(PV)-battery energy storage(BES)system by analyzing a real life house in Istanbul,Turkey,as a case study.The hourly electricity demand of the house was estimated by carrying out a detailed survey of the life style and daily habits of the household.No algorithm of any kind was used for the estimation of the energy demand with the exception of relating the lighting requirement to the daylight hours and the heating and cooling requirements to the seasonal weather changes.The developed method estimates the annual demand with an overall error of 8.68%.The net grid dependency and the feasibility of the PV-BES system was calculated for different combinations of PV and BES system sizes.It was found that when the maximum available roof area is used for PV installation and when the BES system size is increased,it is possible to achieve almost zero net grid dependency,and it is estimated that houses that are in regions with more abundant solar radiation and/or with lower annual electricity consumption,can reach zero net grid dependency.However,the feasibility indicator,which is the payback period,turned out to be no less than 25 years in any of the scenarios.The reasons for the infeasibility are the high prices of PV and BES systems as well as the current restriction in the regula-tions in Turkey,which prevents BES system owners from participating in unlicensed energy generation schemes and selling excess electricity back to the grid.In order to overcome this situation,regulations should be updated to allow BES system owners to benefit from feed-in-tariff schemes,thereby increasing the popularity of both PV and BES usage in Turkey.
文摘Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.
基金support from FAPESP (Sao Paulo Research Foundation,Grant Numbers 2014/02163-7,2017/11958-1,2020/14968-0)CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico,301486/2016-6)the support given by ANP (Brazil’s National Oil,Natural Gas and Biofuels Agency)through the R&D levy regulation。
文摘Batteries,fuel cells,and supercapacitors are electrochemical devices already on the market and still need a boost in kinetics to match the high energy density demand of applications.Perovskites have attracted the scientific community's attention in the last decade due to their electrocatalytic activity,chemical and structural properties,tunability,low cost,and scalability.Efforts have been made to understand the active sites and the operational mechanisms in perovskite oxides to shape them as an electrocatalyst in advanced energy devices.Understanding the role of perovskites is the key to engineering more controlled and efficient electrocatalysts via chemical synthesis,and there is still much to do.This review highlights the use of perovskites in different energy storage and conversion systems.The A,B,and A&B doping-site effects are analyzed to understand the opportunities and challenges related to this class of materials.In addition,the synthesis methods and the properties related to the doping site are described and summarized.
基金supported in part by Russian Foundation for Basic Research(project No.15-08-01324).
文摘In this paper,we give a review of some most powerful pulsed systems developed at the Institute of High Current Electronics(HCEI),Siberian Branch,Russian Academy of Sciences,and describe latest achievements of the teams dealing with these installations.Besides the presented high-power systems,HCEI performs numerous investigations using much less powerful generators.For instance,last year much attention was paying to the research and development of the intense low-energy(<200 kV)high-current electron and ion beam and plasma sources,and their application in the technology[1-3].
基金supported by the National Natural Science Foundation of China(72201152 and 52207229)。
文摘Addressing climate change demands a significant shift away from fossil fuels,with sectors like electricity and transportation relying heavily on renewable energy.Integral to this transition are energy storage systems,notably lithium-ion batteries.Over time,these batteries degrade,affecting their efficiency and posing safety risks.Monitoring and predicting battery aging is essential,especially estimating its state of health(SOH).Various SOH estimation methods exist,from traditional model-based approaches to machine learning approaches.
基金supported by the National Natural Science Foundation of China(Nos.12005289 and 52071331)the National Key R&D Program of China(No.2019YFA0210000)the State Key Laboratory of Nuclear Detection and Electronics,University of Science and Technology of China(No.SKLPDE-KF-202316)。
文摘In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to evaluate the corrosion performance and select a suitable candidate material for use as a molten salt manometer diaphragm in thermal energy storage systems.The results indicated that the alloys(316H SS and GH3535)exhibited less corrosion than pure metals(Ni and Ti)in liquid GaInSn.Ga-rich binary intermetallic compounds were found to form on the surfaces of all the tested metal materials exposed to liquid GaInSn,as a result of the decomposition of liquid GaInSn and its reaction with the constituent elements of the metal materials.The corrosion mechanism for all the tested materials exposed to liquid GaInSn was also investigated and proposed,which may aid in selecting the optimal candidate material when liquid GaInSn is used as the pressure-sensing medium.
基金supported by National Natural Science Foundation of China(No.51107126 and No.512111046)the Key Projects in National Science and Technology Pillar Program(No.2011BAA07B07)+1 种基金the Beiing Nova Program(No.Z141101001814094)the Science and Technology Foundation of State Grid Corporation of China(No.DG71-14-032)
文摘Battery energy storage system(BESS)is one of the effective technologies to deal with power fluctuation and intermittence resulting from grid integration of large renewable generations.In this paper,the system configuration of a China’s national renewable generation demonstration project combining a large-scale BESS with wind farm and photovoltaic(PV)power station,all coupled to a power transmission system,is introduced,and the key technologies including optimal control and management as well as operational status of this BESS are presented.Additionally,the technical benefits of such a large-scale BESS in dealing with power fluctuation and intermittence issues resulting from grid connection of large-scale renewable generation,and for improvement of operation characteristics of transmission grid,are discussed with relevant case studies.