To further identify the dynamics of the period-adding bifurcation scenarios observed in both biological experiment and simulations with differential Chay model, this paper fits a discontinuous map of a slow control va...To further identify the dynamics of the period-adding bifurcation scenarios observed in both biological experiment and simulations with differential Chay model, this paper fits a discontinuous map of a slow control variable of Chay model based on simulation results. The procedure of period adding bifurcation scenario from period k to period k + 1 bursting (k = 1, 2, 3, 4) involved in the period-adding cascades and the stochastic effect of noise near each bifurcation point is also reproduced in the discontinuous map. Moreover, dynamics of the border-collision bifurcation is identified in the discontinuous map, which is employed to understand the experimentally observed period increment sequence. The simple discontinuous map is of practical importance in modeling of collective behaviours of neural populations like synchronization in large neural circuits.展开更多
In this manuscript, the existence of periodic orbits of collision of the first kind has been discussed on the model of Autonomous Four-body Problem by the method of analytic continuation given by Giacaglia [1] and Bha...In this manuscript, the existence of periodic orbits of collision of the first kind has been discussed on the model of Autonomous Four-body Problem by the method of analytic continuation given by Giacaglia [1] and Bhatnagar [2] [3]. For the existence of periodic orbits, Duboshin’s criterion [4] has been satisfied and it has been confirmed by analyzing the Poincare surfaces of section (PSS) [5]. Also it has been shown that the case of collision given by Levi-Civita [6] [7] is conserved by the method analytic continuation. In all sections of this manuscript, equilateral triangular configuration given by Ceccaroni and Biggs [8] has been considered. In this model, third primary of L4 inferior mass (in comparison of the other primaries) is placed at the equilibrium point of the R3BP.展开更多
A stop band gap is predicted in periodic layers of a confined atomic vapor/dielectric medium.Reflection and transmission profile of the layers over the band gap can be dramatically modified by the confined atoms and t...A stop band gap is predicted in periodic layers of a confined atomic vapor/dielectric medium.Reflection and transmission profile of the layers over the band gap can be dramatically modified by the confined atoms and the number of layer periods.These gap and line features can be ascribed to the enhanced contribution of slow atoms induced by atom-wall collision,transient behavior of atom-light interaction and Fabry–Pérot effects in a thermal confined atomic system.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10774088,10772101,30770701 and 10875076)the Fundamental Research Funds for the Central Universities(Grant No.GK200902025)
文摘To further identify the dynamics of the period-adding bifurcation scenarios observed in both biological experiment and simulations with differential Chay model, this paper fits a discontinuous map of a slow control variable of Chay model based on simulation results. The procedure of period adding bifurcation scenario from period k to period k + 1 bursting (k = 1, 2, 3, 4) involved in the period-adding cascades and the stochastic effect of noise near each bifurcation point is also reproduced in the discontinuous map. Moreover, dynamics of the border-collision bifurcation is identified in the discontinuous map, which is employed to understand the experimentally observed period increment sequence. The simple discontinuous map is of practical importance in modeling of collective behaviours of neural populations like synchronization in large neural circuits.
文摘In this manuscript, the existence of periodic orbits of collision of the first kind has been discussed on the model of Autonomous Four-body Problem by the method of analytic continuation given by Giacaglia [1] and Bhatnagar [2] [3]. For the existence of periodic orbits, Duboshin’s criterion [4] has been satisfied and it has been confirmed by analyzing the Poincare surfaces of section (PSS) [5]. Also it has been shown that the case of collision given by Levi-Civita [6] [7] is conserved by the method analytic continuation. In all sections of this manuscript, equilateral triangular configuration given by Ceccaroni and Biggs [8] has been considered. In this model, third primary of L4 inferior mass (in comparison of the other primaries) is placed at the equilibrium point of the R3BP.
基金Supported by the Science and Technology Project of Xi’an(No CXY1134WL02).
文摘A stop band gap is predicted in periodic layers of a confined atomic vapor/dielectric medium.Reflection and transmission profile of the layers over the band gap can be dramatically modified by the confined atoms and the number of layer periods.These gap and line features can be ascribed to the enhanced contribution of slow atoms induced by atom-wall collision,transient behavior of atom-light interaction and Fabry–Pérot effects in a thermal confined atomic system.