期刊文献+
共找到202篇文章
< 1 2 11 >
每页显示 20 50 100
Fractional derivative statistical damage model of unsaturated expansive soil based on unified hydraulic effect
1
作者 ZHANG Hua WANG Peng 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2769-2782,共14页
Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effect... Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effective stress principle,swelling force principle,and soil–water characteristics.Considering the viscoelasticity and structural damage of unsaturated expansive soil during loading,a fractional hardening–damage model of unsaturated expansive soil was established.The model parameters were established on the basis of the proposed calculation method of shear strength and the triaxial shear experiment on unsaturated expansive soil.The proposed model was verified by the experimental data and a traditional damage model.The proposed model can satisfactorily describe the entire process of the strain-hardening law of unsaturated expansive soil.Finally,by investigating the damage variables of the proposed model,it was found that:(a)when the values of confining pressure and matric suction are close,the coupling of confining pressure and matric suction contributes more to the shear strength;(b)there is a damage threshold for unsaturated expansive soil,and is mainly reflected by strength criterion of infinitesimal body;(c)the strain hardening law of unsaturated expansive soil is mainly reflected by fractional derivative operator. 展开更多
关键词 Unsaturated expansive soil Unified hydraulic effect Shear strength theory Hardening-damage model fractional derivative
下载PDF
The Limiting Case of Blending Differences for Bivariate Blending Continued Fraction Expansions 被引量:1
2
作者 赵前进 檀结庆 《Northeastern Mathematical Journal》 CSCD 2006年第4期404-414,共11页
For a univariate function given by its Taylor series expansion, a continued fraction expansion can be obtained with the Viscovatov's algorithm, as the limiting value of a Thiele interpolating continued fraction or by... For a univariate function given by its Taylor series expansion, a continued fraction expansion can be obtained with the Viscovatov's algorithm, as the limiting value of a Thiele interpolating continued fraction or by means of the determinantal formulas for inverse and reciprocal differences with coincident data points. In this paper, both Viscovatov-like algorithms and Taylor-like expansions are incorporated to yield bivariate blending continued expansions which are computed as the limiting value of bivariate blending rational interpolants, which are constructed based on symmetric blending differences. Numerical examples are given to show the effectiveness of our methods. 展开更多
关键词 INTERPOLATION continued fractions symmetric blending differences expansion
下载PDF
Exact solutions of nonlinear fractional differential equations by (G'/G)-expansion method 被引量:6
3
作者 Ahmet Bekir zkan Güner 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期140-145,共6页
In this paper, we use the fractional complex transform and the (G'/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is prop... In this paper, we use the fractional complex transform and the (G'/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is proposed to convert a partial fractional differential equation with Jumarie's modified Riemann-Liouville derivative into its ordinary differential equation. It is shown that the considered transform and method are very efficient and powerful in solving wide classes of nonlinear fractional order equations. 展开更多
关键词 (G'/G)-expansion method time-fractional Burgers equation fractional-order biological popula-tion model space-time fractional Whitham-Broer-Kaup equations
下载PDF
Exact Solution to Nonlinear Differential Equations of Fractional Order via (<i>G’</i>/<i>G</i>)-Expansion Method 被引量:4
4
作者 Muhammad Younis Asim Zafar 《Applied Mathematics》 2014年第1期1-6,共6页
In this article, a new application to find the exact solutions of nonlinear partial time-space fractional differential Equation has been discussed. Firstly, the fractional complex transformation has been implemented t... In this article, a new application to find the exact solutions of nonlinear partial time-space fractional differential Equation has been discussed. Firstly, the fractional complex transformation has been implemented to convert nonlinear partial fractional differential Equations into nonlinear ordinary differential Equations. Afterwards, the (G'/G)-expansion method has been implemented, to celebrate the exact solutions of these Equations, in the sense of modified Riemann-Liouville derivative. As application, the exact solutions of time-space fractional Burgers’ Equation have been discussed. 展开更多
关键词 EXACT Solution to Nonlinear Differential Equations of fractional Order VIA (G’/G)-expansion Method
下载PDF
Algorithm for Fast Calculation of Hirzebruch-Jung Continued Fraction Expansions to Coding of Graph Manifolds
5
作者 Fernando I. Becerra López Vladimir N. Efremov Alfonso M. Hernández Magdaleno 《Applied Mathematics》 2015年第10期1676-1684,共9页
We present a new algorithm for the fast expansion of rational numbers into continued fractions. This algorithm permits to compute the complete set of integer Euler numbers of the sophisticate tree graph manifolds, whi... We present a new algorithm for the fast expansion of rational numbers into continued fractions. This algorithm permits to compute the complete set of integer Euler numbers of the sophisticate tree graph manifolds, which we used to simulate the coupling constant hierarchy for the universe with five fundamental interactions. Moreover, we can explicitly compute the integer Laplacian block matrix associated with any tree plumbing graph. This matrix coincides up to sign with the integer linking matrix (the main topological invariant) of the graph manifold corresponding to the plumbing graph. The need for a special algorithm appeared during computations of these topological invariants of complicated graph manifolds since there emerged a set of special rational numbers (fractions) with huge numerators and denominators;for these rational numbers, the ordinary methods of expansion in continued fraction became unusable. 展开更多
关键词 Hirzebruch-Jung Continued fraction Fast expansion ALGORITHM GRAPH MANIFOLDS
下载PDF
The Traveling Wave Solutions of Space-Time Fractional Differential Equation Using Fractional Riccati Expansion Method
6
作者 Xiaohua Liu 《Journal of Applied Mathematics and Physics》 2018年第10期1957-1967,共11页
In this paper, we firstly give a counterexample to indicate that the chain rule is lack of accuracy. After that, we put forward the fractional Riccati expansion method. No need to use the chain rule, we apply this met... In this paper, we firstly give a counterexample to indicate that the chain rule is lack of accuracy. After that, we put forward the fractional Riccati expansion method. No need to use the chain rule, we apply this method to fractional KdV-type and fractional Telegraph equations and obtain the tangent and cotangent functions solutions of these fractional equations for the first time. 展开更多
关键词 Conformable fractionAL DERIVATIVE The Chain Rule EXACT Solution fractionAL RICCATI expansion Method
下载PDF
Two Dual Expansions for Generalized Bivariate Thiele-Type Matrix Valued Interpolating Continued Fractions
7
作者 顾传青 《Advances in Manufacturing》 SCIE CAS 1997年第2期87-90,共4页
A new method for the construction of bivariate matrix valued rational interpolants on a rectangulargrid is introduced. The rational interpolants are expressed in the continued fraction form with scalardenominator. Til... A new method for the construction of bivariate matrix valued rational interpolants on a rectangulargrid is introduced. The rational interpolants are expressed in the continued fraction form with scalardenominator. Tile matrix quotients are based oil the generalized inverse for a matrix, Which is found to beeffective in continued fraction interpolation. In this paper, tWo dual expansions for bivariate matrix valuedThiele-type interpolating continued fractions are presented, then, tWo dual rational interpolants are definedout of them. 展开更多
关键词 matrix valued rational interpolant continued fraction expansions.
下载PDF
一个含离散型分式核的Hilbert型不等式
8
作者 有名辉 董飞 杨必成 《兰州理工大学学报》 CAS 北大核心 2024年第3期151-155,共5页
引入若干正参数,新构建了一个分式型的离散形态的核函数,并借助于权系数的方法,建立了一个二重Hilbert型级数不等式,并证明此不等式的常数因子是最佳取值.另外,根据余割函数的有理分式展开形式,给出最佳常数因子的余割函数表示形式.通... 引入若干正参数,新构建了一个分式型的离散形态的核函数,并借助于权系数的方法,建立了一个二重Hilbert型级数不等式,并证明此不等式的常数因子是最佳取值.另外,根据余割函数的有理分式展开形式,给出最佳常数因子的余割函数表示形式.通过对参数赋予一些特殊数值,得到了一些已有结果,并且给出了一些新的含特殊核函数的Hilbert型不等式. 展开更多
关键词 HILBERT型不等式 分式型核函数 有理分式展开 余割函数
下载PDF
改进的tan■-展开法和几类非线性分数阶发展方程
9
作者 项芳婷 赵小山 《许昌学院学报》 CAS 2024年第2期22-28,共7页
运用改进的tan■-展开法,以一阶常系数微分方程为辅助方程,结合齐次平衡原理,研究了非线性分数阶Khokhlov-Zabolotskaya-Kuznetsov(KZK)方程、非线性分数阶foam drainage方程、非线性分数阶Jimbo-Miwa(JM)方程.借助符号计算系统Maple,... 运用改进的tan■-展开法,以一阶常系数微分方程为辅助方程,结合齐次平衡原理,研究了非线性分数阶Khokhlov-Zabolotskaya-Kuznetsov(KZK)方程、非线性分数阶foam drainage方程、非线性分数阶Jimbo-Miwa(JM)方程.借助符号计算系统Maple,求出了方程的多种精确解,这些解包括周期解、孤子解、有理函数解、指数函数解,扩大了解的范围. 展开更多
关键词 改进的tan■-展开法 非线性分数阶发展方程 精确解
下载PDF
基于MATLAB的赖特函数分区算法研究及实现
10
作者 李燕 袁晓 《现代信息科技》 2024年第5期1-6,共6页
物理数学中的多数特殊函数可将复平面划分区域采用不同数值技术来计算。赖特函数在分数微积分及其工程应用中有着重要作用,作为一类新型特殊函数也可使用分区算法进行数值计算。通过研究赖特函数在大参数下的渐近展开式和公式中系数的... 物理数学中的多数特殊函数可将复平面划分区域采用不同数值技术来计算。赖特函数在分数微积分及其工程应用中有着重要作用,作为一类新型特殊函数也可使用分区算法进行数值计算。通过研究赖特函数在大参数下的渐近展开式和公式中系数的计算方法,修正积分表达式及积分半径选择定理的错误,进一步改进完善复数域赖特函数的分区算法,并利用MATLAB软件进行编程仿真分析算法精度。实验结果表明,分区算法的适用性广,有良好逼近效果。 展开更多
关键词 分数微积分 特殊函数 渐近展开 分区算法 MATLAB
下载PDF
一个关联余切函数高阶导数的Hilbert型不等式
11
作者 时小春 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第5期580-585,共6页
通过引入多个参数,借助余切函数的部分分式展开式,在全平面上建立了最佳常数因子及与余切函数的高阶导数有关的Hilbert型不等式及其等价形式。特别地,通过对参数赋值,还给出了一些特殊的在全平面上的Hilbert型不等式。
关键词 HILBERT不等式 余切函数 部分分式展开 Hurwitz Zeta函数 GAMMA函数
下载PDF
Sylvester连分数展式中若干例外集的Hausdorff维数
12
作者 廖旭 《数学杂志》 2024年第4期343-357,共15页
对于任意实数x∈(0,1],记x=[d_(1),d_(2),···]为x的Sylvester连分数展式,令ψ(n)为N上的正函数,本文研究了集合A(ψ):■的Hausdorff维数.通过构造覆盖和合适的Cantor型子集,我们得到了该集合的精确维数为■同时,本文还... 对于任意实数x∈(0,1],记x=[d_(1),d_(2),···]为x的Sylvester连分数展式,令ψ(n)为N上的正函数,本文研究了集合A(ψ):■的Hausdorff维数.通过构造覆盖和合适的Cantor型子集,我们得到了该集合的精确维数为■同时,本文还考虑了Sylvester连分数展式的部分商满足■的极限是零或无穷时的集合的Hausdorff维数. 展开更多
关键词 Sylvester连分数 HAUSDORFF维数 增长速度
下载PDF
一类时空分数阶爆破孤立子方程组的新解法
13
作者 陈兆蕙 唐跃龙 《科技通报》 2024年第8期13-21,共9页
为得到一类时空分数阶爆破孤立子方程组的新精确解,本文采用了一种新的解法——拓展的(G'/G)-展开方法。首先通过行波变换,将原分数阶偏微分方程组转化为整数阶非线性常微分方程组,其次结合齐次平衡原理,增加负幂次项,将含有相同次... 为得到一类时空分数阶爆破孤立子方程组的新精确解,本文采用了一种新的解法——拓展的(G'/G)-展开方法。首先通过行波变换,将原分数阶偏微分方程组转化为整数阶非线性常微分方程组,其次结合齐次平衡原理,增加负幂次项,将含有相同次数的幂结合,并令同次幂系数为零,再运用数学软件MATLAB求解相应的系数方程组,得出该方程新的含有参数形式的精确解。结果表明:拓展的(G'/G)-展开方法能丰富这类分数阶偏微分方程的精确解。 展开更多
关键词 时空分数阶爆破孤立子方程组 拓展的(G'/G)-展开方法 MATLAB软件 新精确解
下载PDF
ON COLLISION LOCAL TIME OF TWO INDEPENDENT FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES 被引量:2
14
作者 郭精军 李楚进 《Acta Mathematica Scientia》 SCIE CSCD 2017年第2期316-328,共13页
In this article, we study the existence of collision local time of two indepen- dent d-dimensional fractional Ornstein-Uhlenbeck processes X+^H1 and Xt^H2 with different parameters Hi ∈ (0, 1),i = 1, 2. Under the ... In this article, we study the existence of collision local time of two indepen- dent d-dimensional fractional Ornstein-Uhlenbeck processes X+^H1 and Xt^H2 with different parameters Hi ∈ (0, 1),i = 1, 2. Under the canonical framework of white noise analysis, we characterize the collision local time as a Hida distribution and obtain its' chaos expansion. Key words Collision local time; fractional Ornstein-Uhlenbeck processes; generalized white noise functionals; choas expansion 展开更多
关键词 Collision local time fractional Ornstein-Uhlenbeck processes generalized white noise functionals choas expansion
下载PDF
Some Numerical Extrapolation Methods for the Fractional Sub-diffusion Equation and Fractional Wave Equation Based on the L1 Formula 被引量:1
15
作者 Ren-jun Qi Zhi-zhong Sun 《Communications on Applied Mathematics and Computation》 2022年第4期1313-1350,共38页
With the help of the asymptotic expansion for the classic Li formula and based on the L1-type compact difference scheme,we propose a temporal Richardson extrapolation method for the fractional sub-diffusion equation.T... With the help of the asymptotic expansion for the classic Li formula and based on the L1-type compact difference scheme,we propose a temporal Richardson extrapolation method for the fractional sub-diffusion equation.Three extrapolation formulas are presented,whose temporal convergence orders in L_(∞)-norm are proved to be 2,3-α,and 4-2α,respectively,where 0<α<1.Similarly,by the method of order reduction,an extrapola-tion method is constructed for the fractional wave equation including two extrapolation formulas,which achieve temporal 4-γ and 6-2γ order in L_(∞)-norm,respectively,where1<γ<2.Combining the derived extrapolation methods with the fast algorithm for Caputo fractional derivative based on the sum-of-exponential approximation,the fast extrapolation methods are obtained which reduce the computational complexity significantly while keep-ing the accuracy.Several numerical experiments confirm the theoretical results. 展开更多
关键词 L1 formula Asymptotic expansion fractional sub-diffusion equation fractional wave equation Richardson extrapolation Fast algorithm
下载PDF
Exact solutions for nonlinear partial fractional differential equations 被引量:21
16
作者 Khaled A.Gepreel Saleh Omran 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期32-38,共7页
′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion func... ′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion function method to calculate the exact solutions to the time- and space-fractional derivative foam drainage equation and the time- and space-fractional derivative nonlinear KdV equation. This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations. 展开更多
关键词 fractional calculus complex transformation modified Riemann-Liouville derivative im- proved (G′/G)-expansion function method
下载PDF
REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES 被引量:1
17
作者 申广君 陈超 闫理坦 《Acta Mathematica Scientia》 SCIE CSCD 2011年第5期1860-1876,共17页
Let S = {(St1,···,Std )}t≥0 denote a d-dimensional sub-fractional Brownian motion with index H ≥ 1/2. In this paper we study some properties of the process X of the formwhere Rt = ((St1)2+·... Let S = {(St1,···,Std )}t≥0 denote a d-dimensional sub-fractional Brownian motion with index H ≥ 1/2. In this paper we study some properties of the process X of the formwhere Rt = ((St1)2+···+(Std)2)~1/2 is the sub-fractional Bessel process. 展开更多
关键词 sub-fractional Brownian motion Malliavin calculus sub-fractional Bessel processes chaos expansion
下载PDF
New Analytical Solutions for Time Fractional Benjamin–Ono Equation Arising Internal Waves in Deep Water
18
作者 Orkun TASBOZAN 《China Ocean Engineering》 SCIE EI CSCD 2019年第5期593-600,共8页
In this article, the author sets up the abundant traveling wave solutions for time fractional Benjamin–Ono equation which was introduced to describe internal waves in stratified fluids by using Jacobi elliptic functi... In this article, the author sets up the abundant traveling wave solutions for time fractional Benjamin–Ono equation which was introduced to describe internal waves in stratified fluids by using Jacobi elliptic function expansion method. The traveling wave solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. It can be seen that the obtained results are found to be important for the statement of some physical demonstrations of problems in mathematical physics and ocean engineering. In ocean engineering Benjamin–Ono equations are generally used in computer simulation for the water waves in deep water and open seas. 展开更多
关键词 JACOBI ELLIPTIC function expansion method Benjamin-Ono EQUATION conformable fractional derivative
下载PDF
Numerical Solution of System of Fractional Delay Differential Equations Using Polynomial Spline Functions
19
作者 Mahmoud N. Sherif 《Applied Mathematics》 2016年第6期518-526,共9页
The aim of this paper is to approximate the solution of system of fractional delay differential equations. Our technique relies on the use of suitable spline functions of polynomial form. We introduce the description ... The aim of this paper is to approximate the solution of system of fractional delay differential equations. Our technique relies on the use of suitable spline functions of polynomial form. We introduce the description of the proposed approximation method. The error analysis and stability of the method are theoretically investigated. Numerical example is given to illustrate the applicability, accuracy and stability of the proposed method. 展开更多
关键词 fractional Differential Equation Spline Functions Taylor expansion STABILITY
下载PDF
利用CCTA分析舒张期扩张指数与升主动脉弹性及心肌缺血的关系 被引量:2
20
作者 梁占东 刘彦芳 +3 位作者 朱晓龙 耿鹤群 王晓灿 朱月香 《东南大学学报(医学版)》 CAS 2023年第2期289-294,共6页
目的:利用冠状动脉CT造影检查(CCTA)分析原发性高血压患者舒张期扩张指数(DE)与升主动脉弹性及心肌缺血的关系,评估原发性高血压患者升主动脉病变及功能性心肌缺血。方法:收集经临床确诊原发性高血压并行CCTA检查的84例患者纳入研究,根... 目的:利用冠状动脉CT造影检查(CCTA)分析原发性高血压患者舒张期扩张指数(DE)与升主动脉弹性及心肌缺血的关系,评估原发性高血压患者升主动脉病变及功能性心肌缺血。方法:收集经临床确诊原发性高血压并行CCTA检查的84例患者纳入研究,根据冠状动脉无创血流储备分数值分为心肌缺血组(39例)和无心肌缺血组(45例)。根据DE判断是否存在左心室舒张功能异常,分为左室舒张功能异常组和左室舒张功能正常组。基于CCTA数据测量并计算冠状动脉血流储备分数、DE及升主动脉压力-应变弹性系数(Ep)。分析DE与Ep的相关性以及DE与心肌缺血的关系。结果:心肌缺血组和无心肌缺血组的DE与Ep均呈负相关(r=-0.736、-0.431,P<0.05);DE是升主动脉Ep的独立影响因子(β=-0.420,t=-5.002,P<0.05);左室舒张功能异常组发生功能性心肌缺血的风险是左室舒张功能正常组的3.188倍。结论:原发性高血压患者的DE与升主动脉弹性及心肌缺血关系密切。DE能为临床早期预测原发性高血压患者升主动脉弹性下降及功能性心肌缺血的发生提供有效参考。 展开更多
关键词 原发性高血压 升主动脉弹性 冠脉血流储备分数 舒张期扩张指数 计算机断层扫描
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部