This work leveraged predictive modeling techniques in machine learning (ML) to predict heart disease using a dataset sourced from the Center for Disease Control and Prevention in the US. The dataset was preprocessed a...This work leveraged predictive modeling techniques in machine learning (ML) to predict heart disease using a dataset sourced from the Center for Disease Control and Prevention in the US. The dataset was preprocessed and used to train five machine learning models: random forest, support vector machine, logistic regression, extreme gradient boosting and light gradient boosting. The goal was to use the best performing model to develop a web application capable of reliably predicting heart disease based on user-provided data. The extreme gradient boosting classifier provided the most reliable results with precision, recall and F1-score of 97%, 72%, and 83% respectively for Class 0 (no heart disease) and 21% (precision), 81% (recall) and 34% (F1-score) for Class 1 (heart disease). The model was further deployed as a web application.展开更多
针对多模态多目标优化中种群多样性难以维持和所得等价Pareto最优解数量不足问题,提出一种融合聚类和小生境搜索的多模态多目标优化算法(multimodal multi-objective optimization algorithm with clustering and niching searching,CSS...针对多模态多目标优化中种群多样性难以维持和所得等价Pareto最优解数量不足问题,提出一种融合聚类和小生境搜索的多模态多目标优化算法(multimodal multi-objective optimization algorithm with clustering and niching searching,CSSMPIO)。首先利用基于聚类的特殊拥挤距离非支配排序方法(clustering-based special crowding distance,CSCD)初始化种群;引入自适应物种形成策略生成稳定的小生境,在不同的小生境子空间并行搜索和保持等价Pareto最优解;采用特殊拥挤距离非支配排序策略实现个体选优、精英学习策略避免过早收敛。通过在14个多模态多目标函数上进行测试,并与7种新提出的多模态多目标优化算法进行对比实验以及Wilcoxon秩和检验发现,CSSMPIO的总体性能优于对比算法。最后将算法用于基于地图的测试问题,进一步证明了算法的有效性。展开更多
P-集合(packet sets)是把动态特性引入到有限普通集合X内,改进有限普通集合X得到的一个动态模型;在一定的条件下,P-集合被还原成有限普通集合X。P-集合由内P-集合XF珚(internal packet set XF珚)与外P-集合XF(outerpacket set XF)构成...P-集合(packet sets)是把动态特性引入到有限普通集合X内,改进有限普通集合X得到的一个动态模型;在一定的条件下,P-集合被还原成有限普通集合X。P-集合由内P-集合XF珚(internal packet set XF珚)与外P-集合XF(outerpacket set XF)构成的集合对;或者,(XF珚,XF)是P-集合。P-推理(packet reasoning)由内P-推理(internal packet rea-soning)与外P-推理(outer packet reasoning)共同构成。利用内P-集合与内P-推理,给出了内P-信息恢复概念与内P-信息恢复特征、内P-信息恢复的内P-推理生成与它的属性潜藏、内P-信息恢复的信息元补充定理、内P-信息恢复的依赖性定理,以及内P-推理信息恢复的属性潜藏定理与属性潜藏发现定理。利用这些理论结果,给出内P-推理信息恢复在信息系统中的应用。展开更多
文摘This work leveraged predictive modeling techniques in machine learning (ML) to predict heart disease using a dataset sourced from the Center for Disease Control and Prevention in the US. The dataset was preprocessed and used to train five machine learning models: random forest, support vector machine, logistic regression, extreme gradient boosting and light gradient boosting. The goal was to use the best performing model to develop a web application capable of reliably predicting heart disease based on user-provided data. The extreme gradient boosting classifier provided the most reliable results with precision, recall and F1-score of 97%, 72%, and 83% respectively for Class 0 (no heart disease) and 21% (precision), 81% (recall) and 34% (F1-score) for Class 1 (heart disease). The model was further deployed as a web application.
文摘针对多模态多目标优化中种群多样性难以维持和所得等价Pareto最优解数量不足问题,提出一种融合聚类和小生境搜索的多模态多目标优化算法(multimodal multi-objective optimization algorithm with clustering and niching searching,CSSMPIO)。首先利用基于聚类的特殊拥挤距离非支配排序方法(clustering-based special crowding distance,CSCD)初始化种群;引入自适应物种形成策略生成稳定的小生境,在不同的小生境子空间并行搜索和保持等价Pareto最优解;采用特殊拥挤距离非支配排序策略实现个体选优、精英学习策略避免过早收敛。通过在14个多模态多目标函数上进行测试,并与7种新提出的多模态多目标优化算法进行对比实验以及Wilcoxon秩和检验发现,CSSMPIO的总体性能优于对比算法。最后将算法用于基于地图的测试问题,进一步证明了算法的有效性。