This paper describes a broad perspective of the application of graph theory to establishment of GPS control networks whereby the GPS network is considered as a connected and directed graph with three components.In thi...This paper describes a broad perspective of the application of graph theory to establishment of GPS control networks whereby the GPS network is considered as a connected and directed graph with three components.In this algorithm the gross error detection is undertaken through loops of different spanning trees using the "Loop Law" in which the individual components Δ X, Δ Y and Δ Z sum up to zero.If the sum of the respective vector components ∑X,∑Y and ∑Z in a loop is not zero and if the error is beyond the tolerable limit (ε>w),it indicates the existence of gross errors in one of the baselines in the loop and therefore the baseline must be removed or re_observed.After successful screening of errors by graph theory,network adjustment can be carried out.In this paper,the GPS data from the control network established as reference system for the HP Dam at Baishan county in Liaoning province is presented to illustrate the algorithm.展开更多
According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP...According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP network algorithm. The optimum ignition advance angleand fuel injection pulse band of engine under different speed and load are tested for the samplestraining network, focusing on the study of the design method and procedure of BP neural network inengine injection and ignition control. The results show that artificial neural network technique canmeet the requirement of engine injection and ignition control. The method is feasible for improvingpower performance, economy and emission performances of gasoline engine.展开更多
Networked control system is new hot-point in control engineering. A new delayed model for networked control systems is presented, based on which an LQR controller is designed. A method of delays estimation online is a...Networked control system is new hot-point in control engineering. A new delayed model for networked control systems is presented, based on which an LQR controller is designed. A method of delays estimation online is also given. For the difficulty on implementation of LQR in NCSs with time-variant delays, the Mamdani intelligent logic with LQR controller is addressed. The stability of the networked control system is also given. Simulation results prove that the novel controller can make the system stable and robustly preserve the performance in terms of time-variant delays.展开更多
A nonlinear proportional-integral-derivative (PID) controller is constructed based on recurrent neural networks. In the control process of nonlinear multivariable systems, several nonlinear PID controllers have been a...A nonlinear proportional-integral-derivative (PID) controller is constructed based on recurrent neural networks. In the control process of nonlinear multivariable systems, several nonlinear PID controllers have been adopted in parallel. Under the decoupling cost function, a decoupling control strategy is proposed. Then the stability condition of the controller is presented based on the Lyapunov theory. Simulation examples are given to show effectiveness of the proposed decoupling control.展开更多
This paper presents an application of adaptive neural network model-based predictive control (MPC) to the air-fuel ratio of an engine simulation. A multi-layer perceptron (MLP) neural network is trained using two on-l...This paper presents an application of adaptive neural network model-based predictive control (MPC) to the air-fuel ratio of an engine simulation. A multi-layer perceptron (MLP) neural network is trained using two on-line training algorithms: a back propagation algorithm and a recursive least squares (RLS) algorithm. It is used to model parameter uncertainties in the nonlinear dynamics of internal combustion (IC) engines. Based on the adaptive model, an MPC strategy for controlling air-fuel ratio is realized, and its control performance compared with that of a traditional PI controller. A reduced Hessian method, a newly developed sequential quadratic programming (SQP) method for solving nonlinear programming (NLP) problems, is implemented to speed up nonlinear optimization in the MPC. Keywords Air-fuel ratio control - IC engine - adaptive neural networks - nonlinear programming - model predictive control Shi-Wei Wang PhD student, Liverpool John Moores University; MSc in Control Systems, University of Sheffield, 2003; BEng in Automatic Technology, Jilin University, 2000; Current research interests automotive engine control, model predictive control, sliding mode control, neural networks.Ding-Li Yu obtained B.Eng from Harbin Civil Engineering College, Harbin, China in 1981, M.Sc from Jilin University of Technology, Changchun, China in 1986 and PhD from Coventry University, U.K. in 1995, all in control engineering. He is currently a Reader in Process Control at Liverpool John Moores University, U.K. His current research interests are in process control, engine control, fault detection and adaptive neural nets. He is a member of SAFEPROCESS TC in IFAC and an associate editor of the IJMIC and the IJISS.展开更多
An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the no...An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness.展开更多
For the problems existing in control network of vertical mine region established by conventional way, this paper advances a new scheme of establishing engineering coordinate system for vertical mine region. Based on t...For the problems existing in control network of vertical mine region established by conventional way, this paper advances a new scheme of establishing engineering coordinate system for vertical mine region. Based on the GPS positioning technique, through the relationship of coordinate transformation about a group of connecting points, the transforming parameters between the WGS-84 system and the Beijing54 system or Xi’an80 system about the region were calculated. The plane coordinate systems about the region can be maintained with a few of GPS control points using the method of GPS level, and fits the quasi-geoid about the region based on the Ellipsoid WGS-84. Huanghai Vertical Datum 1985 about the region can be maintained with the Ellipsoid WGS-84 as datum plane. Practice proves that there are advantages using the scheme to establish engineering coordinate system: the coordinate system as engineering foundation for vertical mine region will be in preservation for a long time; it is convenient and easy to carry out daily surveying work based on this coordinate system.展开更多
文摘This paper describes a broad perspective of the application of graph theory to establishment of GPS control networks whereby the GPS network is considered as a connected and directed graph with three components.In this algorithm the gross error detection is undertaken through loops of different spanning trees using the "Loop Law" in which the individual components Δ X, Δ Y and Δ Z sum up to zero.If the sum of the respective vector components ∑X,∑Y and ∑Z in a loop is not zero and if the error is beyond the tolerable limit (ε>w),it indicates the existence of gross errors in one of the baselines in the loop and therefore the baseline must be removed or re_observed.After successful screening of errors by graph theory,network adjustment can be carried out.In this paper,the GPS data from the control network established as reference system for the HP Dam at Baishan county in Liaoning province is presented to illustrate the algorithm.
文摘According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP network algorithm. The optimum ignition advance angleand fuel injection pulse band of engine under different speed and load are tested for the samplestraining network, focusing on the study of the design method and procedure of BP neural network inengine injection and ignition control. The results show that artificial neural network technique canmeet the requirement of engine injection and ignition control. The method is feasible for improvingpower performance, economy and emission performances of gasoline engine.
文摘Networked control system is new hot-point in control engineering. A new delayed model for networked control systems is presented, based on which an LQR controller is designed. A method of delays estimation online is also given. For the difficulty on implementation of LQR in NCSs with time-variant delays, the Mamdani intelligent logic with LQR controller is addressed. The stability of the networked control system is also given. Simulation results prove that the novel controller can make the system stable and robustly preserve the performance in terms of time-variant delays.
文摘A nonlinear proportional-integral-derivative (PID) controller is constructed based on recurrent neural networks. In the control process of nonlinear multivariable systems, several nonlinear PID controllers have been adopted in parallel. Under the decoupling cost function, a decoupling control strategy is proposed. Then the stability condition of the controller is presented based on the Lyapunov theory. Simulation examples are given to show effectiveness of the proposed decoupling control.
文摘This paper presents an application of adaptive neural network model-based predictive control (MPC) to the air-fuel ratio of an engine simulation. A multi-layer perceptron (MLP) neural network is trained using two on-line training algorithms: a back propagation algorithm and a recursive least squares (RLS) algorithm. It is used to model parameter uncertainties in the nonlinear dynamics of internal combustion (IC) engines. Based on the adaptive model, an MPC strategy for controlling air-fuel ratio is realized, and its control performance compared with that of a traditional PI controller. A reduced Hessian method, a newly developed sequential quadratic programming (SQP) method for solving nonlinear programming (NLP) problems, is implemented to speed up nonlinear optimization in the MPC. Keywords Air-fuel ratio control - IC engine - adaptive neural networks - nonlinear programming - model predictive control Shi-Wei Wang PhD student, Liverpool John Moores University; MSc in Control Systems, University of Sheffield, 2003; BEng in Automatic Technology, Jilin University, 2000; Current research interests automotive engine control, model predictive control, sliding mode control, neural networks.Ding-Li Yu obtained B.Eng from Harbin Civil Engineering College, Harbin, China in 1981, M.Sc from Jilin University of Technology, Changchun, China in 1986 and PhD from Coventry University, U.K. in 1995, all in control engineering. He is currently a Reader in Process Control at Liverpool John Moores University, U.K. His current research interests are in process control, engine control, fault detection and adaptive neural nets. He is a member of SAFEPROCESS TC in IFAC and an associate editor of the IJMIC and the IJISS.
基金Supported by the National Natural Science Foundation of China (60575009, 60574036)
文摘An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness.
文摘For the problems existing in control network of vertical mine region established by conventional way, this paper advances a new scheme of establishing engineering coordinate system for vertical mine region. Based on the GPS positioning technique, through the relationship of coordinate transformation about a group of connecting points, the transforming parameters between the WGS-84 system and the Beijing54 system or Xi’an80 system about the region were calculated. The plane coordinate systems about the region can be maintained with a few of GPS control points using the method of GPS level, and fits the quasi-geoid about the region based on the Ellipsoid WGS-84. Huanghai Vertical Datum 1985 about the region can be maintained with the Ellipsoid WGS-84 as datum plane. Practice proves that there are advantages using the scheme to establish engineering coordinate system: the coordinate system as engineering foundation for vertical mine region will be in preservation for a long time; it is convenient and easy to carry out daily surveying work based on this coordinate system.