The compression stroke characteristics of free-piston engine generator were studied. The numerical model of the compression stroke was established based on thermodynamics and dynamics equation,and the leak loss,heat l...The compression stroke characteristics of free-piston engine generator were studied. The numerical model of the compression stroke was established based on thermodynamics and dynamics equation,and the leak loss,heat loss and friction loss were considered. Through solving numerical equations,the in-cylinder pressure of compression stroke under different compression ratios was calculated,energy transfer and conversion process was analyzed,and the calculated results were experimentally verified. The results showed that the actual effective output of electronic energy and the compression energy stored in the com-pressed gas accounted for about 70%. The compression energy gradually increased with the increasing com-pression ratio. When the compression ratio was more than 7. 5,the actual compression energy increased slowly and the energy error between simulation and test decreased.展开更多
A series of phosphorylation and blank CeSn_(0.8)W_(0.6)O_x/TiAl_(0.2)Si_(0.1)O_y catalysts prepared by extrusion molding were tested for NH_3-SCR of NO, and were characterized by techniques of X-ray diffractio...A series of phosphorylation and blank CeSn_(0.8)W_(0.6)O_x/TiAl_(0.2)Si_(0.1)O_y catalysts prepared by extrusion molding were tested for NH_3-SCR of NO, and were characterized by techniques of X-ray diffraction(XRD), Brumauer-Emmett-Teller(N_2-BET), environmental scanning electron microscope(ESEM), temperature programmed reduction(H_2-TPR) and temperature programmed desorption(NH_3-TPD). Effects of phosphorylation on catalytic activity and sulfur-resisting performance of the CeSn_(0.8)W_(0.6)O_x/TiAl_(0.2)Si_(0.1)O_y for NH_3-SCR of NO were mainly studied. Results showed that the phosphorylation improved the catalytic activity and sulfur-resisting performance in an active temperature window of 300–440 °C, and the phosphorylation catalyst with 0.4 wt.% H_3PO_4 exhibited the best catalytic performance and the strongest sulfur-resisting performance. Analysis showed that the phosphorylation increased specific surface area, enhanced the surface acidity and improved redox properties.展开更多
基金Supported by the National Natural Science Foundation of China(51006010)the Program of Introducing Talents of Discipline to Universities(B12022)
文摘The compression stroke characteristics of free-piston engine generator were studied. The numerical model of the compression stroke was established based on thermodynamics and dynamics equation,and the leak loss,heat loss and friction loss were considered. Through solving numerical equations,the in-cylinder pressure of compression stroke under different compression ratios was calculated,energy transfer and conversion process was analyzed,and the calculated results were experimentally verified. The results showed that the actual effective output of electronic energy and the compression energy stored in the com-pressed gas accounted for about 70%. The compression energy gradually increased with the increasing com-pression ratio. When the compression ratio was more than 7. 5,the actual compression energy increased slowly and the energy error between simulation and test decreased.
基金Project supported by the National Natural Science Foundation of China(51272105)Jiangsu Provincial Science and Technology Supporting Program(BE2013718)+1 种基金Research Subject of Environmental Protection Department of Jiangsu Province of China(2013006)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A series of phosphorylation and blank CeSn_(0.8)W_(0.6)O_x/TiAl_(0.2)Si_(0.1)O_y catalysts prepared by extrusion molding were tested for NH_3-SCR of NO, and were characterized by techniques of X-ray diffraction(XRD), Brumauer-Emmett-Teller(N_2-BET), environmental scanning electron microscope(ESEM), temperature programmed reduction(H_2-TPR) and temperature programmed desorption(NH_3-TPD). Effects of phosphorylation on catalytic activity and sulfur-resisting performance of the CeSn_(0.8)W_(0.6)O_x/TiAl_(0.2)Si_(0.1)O_y for NH_3-SCR of NO were mainly studied. Results showed that the phosphorylation improved the catalytic activity and sulfur-resisting performance in an active temperature window of 300–440 °C, and the phosphorylation catalyst with 0.4 wt.% H_3PO_4 exhibited the best catalytic performance and the strongest sulfur-resisting performance. Analysis showed that the phosphorylation increased specific surface area, enhanced the surface acidity and improved redox properties.